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A bstract

Nonlinear Dynamics of Sliding Charge-Density Waves
by

Jeremy Levy

The nonlinear dynamics of the sliding charge-density-waves have been studied. When 
the CDW slides, it generates current oscillations whose frequency u/nbn is proportional to the 
CDW velocity. One can observe mode-locking in response to combined dc+ac driving when 
a harmonic ofw nt,n becomes sufficiently close to a harmonic of the drive frequency ui^.  The 
CDW was driven with combined dc+ac electric fields, and the time-domain response was 
measured. Poincare sections of the attractor are reconstructed using time-delay embeddings. 
Many surprising features are explained only by taking into account many degrees of freedom.

At lower temperatures, many crystals of NbSe3  exhibit "switching" behavior, in which 
the CDW depins abruptly and hysteretically. In the switching regime, the CDW exhibits 
a period-doubling route to chaos when combined dc+ac fields are applied. The chaotic 
behavior has been measured in the time domain. Time-series analysis confirms tha t the 
chaotic behavior is indeed low-dimensional, and provides an estimate of the number of 
active degrees of freedom. For ac driving frequencies less than 5 MHz high-dimensional 
behavior is observed which is indistinguishable from random noise.

A model of both switching and non-switching CDW dynamics is proposed which takes 
into account the interaction of the CDW with uncondensed carriers. Hysteresis is observed in 
the limit of strong pinning and/or high temperature, consistent with experiment. However, 
in NbSea there are uncondensed carriers which do not freeze out at low temperatures. It 
remains a mystery why these uncondensed carriers do not appear to interact with the CDW 
in the same way as thermally excited quasiparticles.

Another unique phenomenon of "switching" samples is the phenomenon of delayed con
duction. When a rectangular voltage pulse is applied which is above the threshold for CDW 
conduction, the CDW begins to slide only after a delay r . Detailed measurements of the 
impulse response of switching NbSe3  have been performed as a function of pulse height, 
tem perature, and initial configuration. The phenomenon of conduction delays provides

xi



strong constraints on any model of switching CDW dynamics. Numerical simulations of the 
proposed model of CDW dynamics agree well with experiment.
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1

C hapter 1 

Introduction

I t ’s slinky, i t ’s slinky,
I t’s fun, i t ’s a wonderful toy.
I t’s slinky, i t ’s slinky,
I t ’s fun for a girl or a boy,
I t ’s fun for a girl or a boy.
—James Industries

1.1 Basic N otion s

1.1.1 W hat is a Charge-Density Wave?

A charge-density wave (CDW) is a periodic modulation of the electronic density which arises 
in quasi-one-dimensional materials [1, 2, 3, 4, 5]. Associated with tha t density modulation 
is a  distortion of the underlying lattice. The CDW instability was first proposed by Peierls 
in 1955 [6 ]. Consider a one-dimensional lattice of atoms with spacing a, illustrated in 
Fig. 1.1(a). In the nearly-free-electron picture, the electronic energy is approximately a 
quadratic function of the momentum q until one reaches the Brillouin zone, at q =  ± 7r /a . 
The gap in energy at the Brillouin zone is created by the interaction of the Bloch electrons 
with the periodic potential lattice. The magnitude of the gap is given to first order by 
A =  2 |V2 ?|, where Vi, is 2g-Fourier component of the lattice potential V(.r). At zero 
tem perature, the electrons will fill the lowest energy states up to the Fermi surface, which 
for a half-filled band is just the two points ±n/2a.

Peierls showed th a t a one-dimensional electronic system is unstable to any pertubation 
which will create a gap at the Fermi surface. For a half-filled band, if the lattice were 
to distort as shown in Fig. 1.1(b), a gap would form at the Fermi surface. The electrons
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Figure 1.1: (a) One-dimensional crystal in the nearly-free electron approximation. Top part 
is a schematic real-space picture of the atomic spacings, with lattice constant a. Bottom  part 
shows the energy band for a nearly-free electron gas in one dimension, (b) One-dimensional 
crystal after Peierls distortion for a half-filled band. The lattice constant has doubled while 
the Brillouin zone has become half. Bottom part shows the energy band for the Peierls- 
distorted state.
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near the Fermi surface would have their energy lowered. The cost in elastic energy of 
producing a distortion is proportional to A 2, where 2A is the CDW gap, whereas the 
electronic gain is proportional to A 2 log A in one dimension, so tha t the Peierls ground 
sta te  is always favored in one dimension. Fluctuations destroy long-range order in a  truly 
one-dimensional system, but in quasi-one-dimensional materials such as NbSea, long-range 
ordering is achieved through the transverse coupling, and the Peierls transition occurs at 
non-zero temperature.

1.2 T he Peierls Transition

Several concepts associated with the Peierls transition will be im portant later, and so it is 
worth discussing in brief the microscopic theory of the Peierls transition. The mechanism 
which gives rise to  the Peierls instability is the electron-phonon interaction, combined with 
the peculiar geometry of the Fermi surface in quasi-one-dimensional metals. Lattice dis
tortions perturb the electronic potential in a metal, and these perturbations are typically 
screened out over the Thomas-Fermi screening length At f - But for perturbations with 
wavevector q near 2kp,  as we shall see, the screening becomes large and indeed diverges in 
one dimension. The consequences of this will become clear later, but first let me describe 
the Lindhard approach to screening, in which it will become clear why q =  2kf  fluctuations 
are so important.

1.2.1 Lindhard Theory

In a metal, the dielectric function e(g,u>) has the form:

4fl-e2
t (q,U) = l + — F(q,u, ,T).  (1.1)

F ( q , u , T )  is the temperature-dependent Lindhard (response) function

F ( q , u , T )  = J '  fk  ~  f k+q ( 1 .2 )
^  -  e* -  +  iif

where /* =  (1 +  exp(/?et) ) - 1  is the Fermi distribution function and 0 = 1 / k s T .  It is also 
related to the linear susceptibility x(g, ui, T)

X(q,ui,T) = ^ F ( q , U,T)  (1.3)
r

The Lindhard formalism is really nothing more than first-order time-dependent perturbation 
theory, and consequently it involves involves a  sum over all the electronic states. In the
numerator, one has the difference of the occupation of electronic states at k  and k + q.
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At zero or low temperatures, the numerator will vanish unless the state k is below the 
Fermi level and k + q is above it, or vice versa. Since one is interested in the most divergent 
contributions to F (q ,u ,T ) ,  one should consider what requirements must be made in order for 
the denominator in Eq. 1.2 to vanish. For now, let us consider the case where u  = 0. Then, 
the denominator vanishes when the two states have the same energy. This divergence will 
be unim portant unless the numerator is non-vanishing as well, and so we see tha t electronic 
states on opposite sides of the Fermi surface can give potentially large contributions to 
the Lindhard function. Furthermore, depending on the shape of the Fermi surface, these 
contributions can be large or small, depending on how well “nested” the Fermi surface is. 
T hat is, if there are large portions of the Fermi surface which are separated by a constant 
wavevector q, then the divergence of the Lindhard function will be more pronounced. When 
this happens, the Fermi surface is said to be “well-nested” .

Fig. 1.2 shows an example of nesting in one and two dimensions. In Fig. 1.2(a), the 
Fermi “surface” consists of two points, and so the nesting is perfect. The solid lines show the 
original Fermi “points” , and the dashed lines show the same points displaced by Q =  2kp. 
In Fig. 1.2(b), one considers the effects of higher spatial dimensions, where the Fermi surface 
is quasi-one-dimensional, so that it is essentially two planes. In Fig. 1.2(c), one sees that 
only a  small portion of the Fermi surface is nested for an isotropic metal. But, in certain 
cases, such as Fig. 1.2(d), nesting can occur over a large portion of the Fermi surface even 
in higher dimensions.

Fig. 1.3 shows the Lindhard function in one, two and three dimensions. In one dimen
sion, there is a logarithmic singularity that becomes rounded at finite temperature. In two
dimensions, there is a divergence in the slope at q =  2k p,  and in three dimensions, the
curvature diverges.

One of the consequences of the diverging susceptibility is a dramatic effect on phonon 
frequencies near 2kp. Because the electrons screen 2kp distortions so well, the restoring 
force between neighboring ions is reduced, and hence the phonon frequency is driven to 
zero at q = 2kp. This phenomena is known as the Kohn anomaly in general, and in one 
dimension (because it is so pronounced), it is known as the giant Kohn anomaly.

1.2.2 The Frohlich Hamiltonian

Let us consider the simplest system in which all of this occurs, known as the Frohlich 
Hamiltonian:

H jro h lic h  = X / * 4 C* + 5 1  hu)1bl b1 + 5 1  0(3)4+, C*(^ + (L4)
k q k,q

The first term  is the unperterbed electron hamiltonian, the second term gives the un
perturbed phonon system, and the third term gives the electron-phonon interaction, the
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Figure 1.2: Fermi surface nesting in one and two dimensions, (a) Fermi surface consists 
of two “points” , (b) Fermi surface consists of two lines. Such behavior is expected if the 
transverse coupling is weak, (c) Fermi surface for a 2-d isotropic metal. Nesting is only over 
a small portion of the Fermi surface, (d) Two-dimensional Fermi surface in which nesting 
is much more pronounced (ref. [3]).



6 CH APTER 1. INTRODUCTION

M

1-Sto050

q!2k,

Figure 1.3: Lindhard Function in one, two, and three dimensions at zero temperature. At 
finite temperatures, divergences are rounded (ref. [7]).

strength of which is given by a wave-vector dependent electron-phonon coupling constant 
g(q). The phonon creation and annihilation operators are related to the displacement oper
ator by

< * ■ ' >

For the simple monotomic lattice we are considering, there are only acoustic phonons, whose 
phonon dispersion will be assumed to be linear. The electron-phonon interaction renormal
izes the bare phonon energies, yielding a new dispersion relation:

fi’ =  ^ 2 ( l - ^  F(q,U,T)).  (1.6)

The new phonon dispersion relation is illustrated in Fig. 1.4 for d =  1,2,3 dimensions.
As was mentioned earlier, the Lindhard function diverges in one dimension at zero tem

perature:

F(q,w = Q,T = 0) = D ( e p ) ~  In (1-7)
q 2Kf  -  q
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Figure 1.4: Kohn anomaly of phonons in d =  1 ,2 ,3  dimensions (ref. [3]).

Here D(ep)  is the density of states a t the Fermi surface.
As the tem perature is lowered, the phonon energy a t q = 2k p  is reduced. The tem pera

ture a t which the 2kf  phonon goes to  zero is the mean-field Peierls tem perature Tj£F, and 
is given for tight-binding electrons by

kBT ^ F =  2.28 C fe -1'** ( 1 .8 )

where Ao is the dimensionless phonon coupling constant Ao =  g(2kp)2 D(cp)/hui2kF ■
Below Tp,  the 2kp  phonon modes will be macroscopically occupied:

< w - < ‘U >  = j< 5 j j |^ r * .  <19>
where u is the amplitude of the ionic displacement and M  is the ionic mass. If one only 
considers the interaction of the electrons with the 2 kp  mode (i.e., mean-field approximation),
then the Hamiltonian Eq. 1.4 becomes quadratic in cjt and c\,  and can be diagonalized by
a Bogoliubov transformation:

( 1.10)
k

where K is the elastic constant of the 2kp  mode, and 7 I and 7 * are given by

7 I  =  Ujfc4  +  Vk  e - ’ M _ 2 i F  U ’1 1 )

=  « - tc L fc +  v . ke~,‘t'clkF_ le. ( 1 .1 2 )

The coefficients u t  and vi  satisfy relations identical to  th a t in the BCS theory of supercon
ductivity:

Uk = y / ( l + t k/E „)/2 ,  (1.13)

Vk =  sgn(|fc| — k / ) \ / ( l  — eic/Ek)/2. (1.14)
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The quasiparticle energies are given by

Ek =  sgn(|*| -  kF) \J ( \  +  A 2 (1.15)

where A =  g(2kp )|(fc2 i F +  I>2 i P)l- The CDW gap is 2A, and has a BCS-like dependence on 
tem perature.

The order parameter is complex, and therefore has an amplitude and a phase:

A ei* = g(2kF)(bu , + b l tF). (1.16)

The CDW ground state is formed by filling all the quasiparticle states below the gap:

ip
=  I H t !  JO) (1-17)

fc=o

The electronic charge density in the ground state can easily be calculated:

p(x) -  TT{ 'S lcD w \J%2iCtk+qCk\i&CDw) = po + Pi cos(2krx + <l>), (1.18)
k

where

— =  —7 —  =  *“  ln(“7~)- (1.19)po ffAgff irep A

The case of interest is when the CDW wavelength X c d w  =  is not commensurate 
with the lattice spacing a. In tha t case, the ground state energy is independent of the 
phase <j>. The formation of a charge-density wave is an example of a spontaneous symmetry 
breaking tha t occurs often in physical systems. We shall see that the U( 1) symmetry of the 
order parameter (invariance under multiplication by etS) has several important consequences, 
one of which is the existence of gapless excitations or Goldstone modes, corresponding to 
the rigid translation of the CDW condensate and yielding a net current.

1.3 NbSe3

An introduction would not be complete without discussing some of the material aspects 
of CDWs. In this thesis I have measured exclusively the properties of the CDW material 
NbSe3 . There are several excellent references which discuss the properties of NbSe3  and 
related MX3  compounds, as well as the other types of known CDW materials [3, 8 ]. The most 
im portant facts about NbSe3  are as follows: In NbSe3 , there are actually two CDWs, and 
a portion of the Fermi surface is not completely gapped, so that free carriers remain at low 
temperatures. The formation of two CDWs shows up rather dramatically in the resistance 
versus temperature curve shown in Fig. 1.5. There are two peaks corresponding to the 
freezout of normal carriers, but the resistance eventually drops due to the increasing mobility
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Figure 1.5: Resistance versus temperature of NbSe3  (ref. [9, 7]).

of the uncondensed carriers. The first Peierls temperature occurs at 7p i=145  K, while the 
second occurs a t Tp2=59 K. Although only a small portion of the Fermi surface remains 
ungapped a t low temperatures, it has a dramatic effect on the residual resistance ration 
(RRR) =  R(T=300 K )/R (T =4.2  K), which can be as high as 400 in some samples [10].

If one is interested in the low-energy excitations of the CDW, then it is useful to write down 
an effective Hamiltonian by expanding in powers of the phase of the order parameter 4> and

where d is the dimension of the CDW, and m* is the effective mass density of the CDW, 
and K is the Young modulus of the CDW. Empirically, m* is negligible for many of the 
regimes of interest, and henceforth will be ignored.

In real materials there are always defects: impurities, grain boundaries, dislocations, etc. 
Because there exist gapless excitations, which correspond to long-wavelength expansions 
and compressions of the CDW, there is a coupling of the CDW to these impurities. For 
simplicity, assume tha t at sites X{ there exist impurities which perturb the CDW locally 
in the vicinity of £,. The impurity potential V (x  — i , )  is usually approximated by a delta

1.4 T he Fukuyam a-Lee-Rice M odel

various space and time derivatives. When one does this, one obtains to lowest nontrivial 
order:

( 1.20)
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function V{x — X() «  VoS(x — x,), and one should add to  Eq. 1.20 the term

Himp =  V0po ^ 2  C0 S[2 A/-Xi +  <0 (x, )] ( 1 -2 1 )
I

One can also couple the CDW to an electric field. The coupling is straightforward:

H „ t  =  ~~E4> ( 1 .2 2 )7T

The equations of motion are obtained by assuming overdamped motion,

7 0 ^ ( X) =  J ( H j  + H imp + H ext) 2JJ

where 7 0  is a  phenomenological damping constant corresponding to  the intrinsic CDW 
damping.

Eq. 1.23 is usually written down in discretized form, where the degrees of freedom be
tween impurity sites are integrated out [11, 12]. The most common version is when the
impurity sites x; are assumed to form a lattice, bu t the phase of the impurity coupling 
f t  = Q i i  is assumed to  be a random variable modulo 2ir. In this case, the equations of 
motion become:

7 0 fa = K{fa+1 -  2fa +  <h_i) +  V0 sin(<fc -  f t )  +  E (t) (1.24)

where 7 0  is a phenomenological damping constant, fa describes the phase at impurity site 
i, and E(t)  is a time-dependent electric field.

Eq. 1.24 is know as the classical-deformable or Fukuyama-Lee-Rice (FLR) model. Sev
eral crucial assumptions have been made in arriving at this model. First, it was assumed 
tha t the phase <j> of the order parameter is the only relevant part which contributes to the 
dynamics, and tha t amplitude fluctuations require too much energy to be relevant. Empir
ically, this assumption appears sound in many experimentally accessible regimes. However, 
Coppersmith has shown [13] that strain energies become unbounded in the sliding state, 
implying th a t amplitude degrees of freedom must become important. Another assumption 
is that the CDW does not interact with normal or uncondensed carriers. When the CDW 
deforms, the local charge density changes and is compensated by a backflow of normal car
riers. This interaction can become quite strong at low temperatures. The consequences of 
this interaction will be discussed in section 1.4.2, and in chapter 6

The Fukuyama-Lee-Rice (FLR) equations of motion have a quasi-intuitive mechanical 
analogy, which is tha t of (massless) balls moving down a  washboard, coupled together by 
springs, shown in Fig. 1.6. The washboard phases are random with respect to one another, 
and the balls may or may not slide, depending on the amount of tilt (proportional to E(t)).  
It should be clear that if the springs are fairly weak, there will be many metastable states 
of the CDW, as shown in Fig. 1.7.
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Figure 1.6: Mechanical analogue of the Fukuyama-Lee-Rice model. Balls represent the 
phase a t each impurity site, and springs model the elasticity of the CDW. The wasboard 
interaction arises from the interaction of the CDW with impurities. By tilting the washboard 
(applying an electric field), one can depin the CDW.
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1 0

O S

30 150100 200

Figure 1.7: Plot of CDW phase 4> versus position. Two solid lines show two metastable 
states of the CDW. The dashed line shows the difference of the two states (shifted by one 
wavelength for clarity). The CDW has advanced by approximately one wavelength in the 
region 50 < * <  150 (ref. [14]).
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Figure 1.8: Plot of the charge-density in two regimes of pinning. Triangles indicate impurity 
sites, (a) Strong pinning regime. CDW distorts around each impurity, (b) Weak pinning 
regime. CDW distorts over the Lee-Rice length X m  to take advantage of fluctuations in 
density of pinning centers.

1.4.1 Strong Pinning, Weak Pinning

Aside from the time scale jo,  there is really only one other relevant parameter in Eq. 1.24, 
which is the ratio of the spring force K  to the pinning strength %. This ratio is denoted in 
the literature as e =  A'/Vo- For c < <  1 , it is much more energetically favorable to align every 
impurity with an extremum of the CDW, as shown in Fig. 1.8(a). This will happen when 
the concentration of impurities is small, or if Vo is small. This is known as “strong” pinning. 
Note that strong pinning does not necessarily imply that the impurities are strong in any 
absolute sense. If the concentration is small, then the effective elastic coupling between the 
phase at two neighboring impurity sites will decrease. In the limit e < <  1, it is easy to 
see that the threshold for CDW conduction is Et  «  Vo, which is the threshold for a single 
degree of freedom.

At the other extreme, e > >  1, the situation is more complicated. As depicted in 
Fig. 1.8(b), the impurities are so weak compared to the rigidity of the CDW that the 
CDW phase is essentially constant over many impurities. However, spatial fluctuations in 
the number of impurities can be used to lower the energy of the CDW, since regions of 
few impurities will pin the CDW more strongly. The details of this argument were worked 
out by Lee and Rice [15]. In the weak-pinning limit, the phase of the CDW is essentially 
constant over a distance Xl r , known as the Lee-Rice length, and one can think of the CDW 
as consisting of coupled domains, the length of which is X l r .  It is numerically more efficient
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to  work in the strong-pinning regime, since there are more Lee-Rice domains. I t is widely 
assumed th a t the dynamics of sliding CDWs in the weak and strong pinning regime do not 
differ qualitatively [12]. The Lee-Rice length \ l r  is alternately known as the phase-phase 
coherence length 4  (which is in general anisotropic), which sets the length scale for dephas- 
ing of the CDW: (^(ar)0(O)) ~  e~x^ .  The transverse correlation length has been measured 
in NbSe3  by low-angle X-ray scattering [16], and is on the order of 1 fim. In the conducting 
direction, the  correlation length is estim ated to  be an order of m agnitude larger.

1.4.2 Normal Carriers

In almost sill of the known CDW materials, the CDW coexists a t finite tem peratures with 
normal carriers which Eire excited across the gap. In this way, the CDW  behaves much like 
a  semiconductor, and the linear ohmic conductivity (not arising from collective motion of 
the CDW ) behaves in an Ahrrenius fashion. At finite frequencies, there will be dielectric 
contributions to  the to tal current. In general, the total current can be w ritten as

j(r ,< )  =  ee0E  + <tE  + peit, (1-25)

where e is the dielectric constant, eq is the perm ittivity of free space, and <r is the linear 
conductivity. The to tal current is both conserved and incompressible, so th a t V  j =  0. T h a t 
the CDW  interacts strongly with uncondensed carriers, as can be seen from the fact th a t 
the CDW current scales with the linear conductivity above threshold. Fig. 1.9 shows the 
tem prature dependence of the linear and nonlinear currents in the blue bronze K0 .3 M0 O 3 . 
The dashed line in the inset shows the ohmic portion of the conductivity, while the solid 
line shows the total (CDW plus normal) current versus voltage. The (almost) straight 
line shows th a t both the CDW and normal currents are activated. A similar dependence 
of the the dielectric relaxation frequency (corresponding to the “crossover” frequency in a 
single-degree-of-freedom overdamped oscillator) was observed by Tucker et at. At lower tem 
peratures and much higher fields, a second threshold is observed, in which the conductivity 
changes by more than  several orders of magnitude [18]. This second, higher threshold is 
often hysteretic, as seen in Fig. 1.10. The effects of normal carriers was first investigated in 
the FLR model by Sneddon, who investigated the corrections due to  the presence of normal 
carriers in the sliding sta te  [20]. Littlewood showed how the interaction of norm al carriers 
could explain the presence of two threshold fields and the scaling of the CDW  and normal 
conductivities in the semiconducting materials. In Fig. 1.11, the to tal current is shown as 
a  function of the field for various tem peratures, using m aterial param eters appropriate to 
Kq,3 Mo0 3 . The crossover from the low-velocity solutions to the high-velocity ones is as
sumed to  occur when the current oscillations occur at such a high frequency th a t they can 
no longer be screened by normal currents.
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Figure 1.9: Tem perature dependence of the linear and nonlinear portion of the current in 
K0 .3 M0 O 3  (ref. [17]).

1.5 N arrow -B and N oise

When the CDW slides over impurities, the current oscillates in time due to the interaction 
with impurities. The frequency of oscillation is proportional to the time-averaged CDW 
current, as shown in Fig. 1.12. Such oscillations are known in the literature as “narrow
band noise” . Narrow-band noise was first observed by Fleming [22]. Fig. 1.13 shows power 
spectra of the voltage across the CDW for various values of the driving current Idc- As 
the dc current is increased, the narrow-band-noise peak and its harmonics move to  higher 
frequencies.

Narrow-band noise in CDWs is generally believed to be a bulk effect, rather than arising 
from current conversion (phase slip) at the sample contacts. If narrow-band noise is a bulk 
effect, then the amplitude of the noise should scale as N ~ w h e r e  N  is the number of 
Lee-Rice domains. Experiments generally support this conjecture[23, 24], but there have 
been studies which suggest otherwise [25]. It has also been suggested tha t narrow-band 
noise is generated at the contacts through phase-slip [26].
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1a

Figure 1.10: Nonlinear conduction in K0 .3 M0 O3  a t T=4.2 K (ref. [18]).

1.6 M ode-Locking

1.6.1 Mode-locking in Josephson Junctions

Not long after the discovery of narrow-band noise came the idea of applying combined dc 
and ac fields to the CDW. The expectation was that one might see interference effects similar 
to those seen in Josepheson junctions. In a Josephson junction, a supercurrent J  can flow 
across without any voltage drop, provided that the current is less than a critical amount 
Je. Above J e the voltage increases monotonically. Associated with the increase in voltage 
is an oscillation whose frequency is proportional to the voltage. This is known as the ac 
Josephson effect.

The application of microwave fields causes Shapiro “steps” in the observed voltage [27],

nhue x =2eV.  (1.26)

where u/ex is the microwave frequency, V  is the voltage step, and n is an integer. The 
Josephson steps correspond to mode-locking of the microwave frequency to the Josephson 
frequency.
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Figure 1.11: CDW I-V characteristic for different tem peratures, using param eters appropri
ate to  K0 .3 M0 O3  (ref. [19]).
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Figure 1.12: Fundamental frequency of the narrow-band noise versus measured CDW current 
(ref. [2 1 ]).
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Figure 1.13: Power spectrum  of narrow-band noise for various values of the dc driving 
current Idc (ref. [2 2 ]).

1.6.2 Mode-Locking in CDWs

It was quickly realized that a similar type of interference phenomena might be seen in CDWs. 
In CDWs, the relation between voltage and current are swapped, so tha t the CDW current 
/cdw shows a step structure in response to applied radio-frequency fields. As was mentioned 
in section 1.5, the CDW oscillates with a frequency proportional to  its velocity, due to the 
interaction with impurities. If one applies a time-varying electric field to the CDW,

E{t) =  £dc +  Eac cos(u „ t) ,  (1-27)

one can cause the narrow-band-noise frequency u/nbn to “lock” to  the external drive frequency 
if the two are close enough to being commensurate. Such behavior is known as mode- 
locking, and it occurs genetically in nonlinear systems with two competing frequencies. 
Such interference phenomena was first observed by Monceau in the differential resistance 
of NbSe3  as a  function of the ac frequency. When the ac frequency became comparable 
to a multiple of the narrow-band-noise frequency, a peak was observed in the differential 
resistance.
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Figure 1.14: Differential resistance in NbSe3  as a  function of uiex, for various values of the 
dc bias f jc  (ref. [28]).
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Figure 1.15: Plot of Jc<jw versus Vdc in the presence of ac driving (ref. [7]).

1.6.3 Measurements of Mode-Locking 

I  — V  C u rv es

There are several signatures of mode-locking in CDWs. If one looks at the I  — V  character
istics of a  CDW, then there will be “steps” at which the CDW current 7cdw is constant over 
a  range of voltage. Fig. 1.15 shows a typical I  — V  curve in the presence of rf fields. Mode- 
locked steps occur when the ratio of the driving frequency wex to the narrow-band-noise 
frequency w„bn is sufficiently close to a  rational number p/q.

In an ideal, infinite system, these steps are predicted to occur at every rational value 
Wnbn/wex =  p/q  [29]. Such a self-similar structure is called a “devil’s staircase” , presumably 
because such a  staircase would be difficult to climb if one had to land on every step. Fig. 1.16 
shows results of a simulation by Middleton of the FLR model in d =  2 dimensions driven 
by square pulses.

D iffe ren tia l R e sis tan ce

Such small steps are hard to observe by just looking at I  — V  curves. Often, one looks at 
the differential resistance d V /d l ,  a quantity tha t is straightforward to measure using lock-in 
techniques. When mode-locking occurs, the differential resistance of the CDW becomes 
infinite; uncondensed electrons still contribute to  the differential resistance. It is useful to 
keep a simple two-fluid picture in mind when thinking about mode-locking, as shown in



20 CHAPTER 1. INTRODUCTION

0.5

0.4

0.3
>

0.2

0.1

14.6 14.8 15 15.2 15.4
F0

Figure 1.16: Devil’s Staircase in response to pulsed driving for Fukuyama-Lee-Rice model 
in d  =  2 dimensions (ref. [29]).

Fig. 1.17. Actually, the coupling between the CDW and normal electrons is much more 
complicated; some of the consequences of this interaction will be discussed in chapter 6 .

The interference features show up quite strikingly in the differential resistance, as shown 
by three examples in Figs. 1.18, 1.19, 1.20. The details of the features vary from sample 
to sample, but the general phenomena is the same, an increase in d V /d l  whenever w„bn «  
p/q  u>ex. In most samples, such as that shown in Fig. 1.18, only a small fraction of the CDW 
becomes locked. Some samples exhibit complete mode-locking, but only for the integral 
(p :l) and low-order subharmonic steps such as the 1:2 step. When complete mode-locking 
occurs, the broadband conduction noise is eliminated, as seen in Fig. 1.19. Vanishingly few 
samples exhibit a large number of subharmonic steps. Such samples invariably have uniform 
cross sections and a much lower amount of broadband noise [30] (see section 2.2.2). Fig. 1.20 
shows such a sample. The mode-locked steps are flanked by negative “wings” , which are 
indicative of frequency pulling of wnbn toward uiex.

Pow er Spectra

Another way to probe the dynamics of the mode-locked state is to look at power spectra. It is 
difficult to look a t power spectra near the integral mode-locked steps, because of interference 
with the driving frequency and harmonics. Therefore, interest has centered on behavior near 
or a t subharmonic steps. In the absence of ac driving, the narrow-band noise has a natural 
width (which is often sample dependent). This width narrows significantly when mode-
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Figure 1.17: Simple two-fluid picture of CDW and Ohmic conductivity. d V /d l  =  R  in 
pinned and mode-locked state.
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Figure 1.18: Differential resistance d V /d l  in the upper transition of NbSe3  (ref. [31]).
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Figure 1.19: (a) Top trace shows differential resistance d V /d l  as a function of the dc bias 
current in the absence of ac driving. Bottom trace shows amplitude of the measured broad
band noise. The noise is negligible in the pinned state, (b) Top trace shows d V /d l  in 
the presence of ac driving. Complete mode-locking occurs when d V fd l  reaches its ohmic 
value. Bottom trace shows the magnitude of the broadband noise. Note that when complete 
mode-locking occurs, the broadband noise vanishes (ref. [32]).

locking occurs. Fig. 1.21 shows an example of such a narrowing. This narrowing during 
mode-locking indicates that the CDW velocity is highly coherent. Fisher, who had proposed 
that the CDW depinning transition was an example of a dynamical phase transition [35], 
has suggested that the magnitude of the narrow-band noise amplitude in the harmonically 
mode-locked state should scale with the dynamic velocity-velocity correlation length £ as

<L28>
where V  is the volume of the crystal. The correlation length £ diverges as the mode- 
locked sta te  is approached. As was mentioned earlier, power spectrum measurements cannot 
distinguish between the narrow-band noise and the drive signal, so relation 1.28 cannot be 
verified in this manner.

Relation 1.28 does not hold for the subharmonic mode-locked steps. The amplitude of 
the current oscillations are not enhanced during subharmonic locking. While the narrow-
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Figure 1.20: Differential resistance in the presence (top trace) and absence (bottom  trace) 
of 50 MHz rf driving. The quality of the crystal is indicated by the presence of more than 
150 subharmonically mode-locked steps (ref. [33]).

band-noise peak becomes instrumentally narrow during mode-locking, fluctuations in the 
amplitude increase dramatically [36, 37]. Fig. 1.22 shows a histogram of the narrow-band- 
noise am plitude in the 1:2 mode-locked state, and in the absence of ac driving. For large 
amplitudes of ac driving, the amplitude can remain fixed for minutes [36], giving rise to the 
different peaks in the histogram.

Fluctuations can also cause interm ittent jumping between mode-locked states with dif
ferent p  : q ratios, although this generally occurs with samples which have a  large broadband 
noise [38]. Fig. 1.23 shows a histogram of the narrow-band noise when the CDW is biased 
slightly away from the  2:3 mode-locked step. The interm ittent locking reflects the fact th a t 
the mode-locked attractors are preferred to unlocked states, and th a t lower order rational 
values of the ratio wnbn : <*iex are more attracting than higher order rationale.

Wiesenfeld and Satija have studied the noise tolerance of frequency-locked dynamics [39]. 
Although the true dynamics of a system may be high-dimensional, one can often trea t the
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Figure 1.21: Power spectrum  of narrow-band noise in the absence (dashed line) and presence 
(solid line) of ac driving. The mode-locked peak becomes instrumentally narrow during 
mode-locking (ref. [34]),
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Figure 1.22: Histogram of narrow-band-noise amplitude in the locked and unlocked sta te  
(ref. [36]).
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Figure 1.23: Histogram ofcvnbn for sample which displays interm ittent mode-locking behav
ior. The sample is biased slightly above the p : q = 2 : 3  step (ref. [38]).
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Figure 1.24: (a) Phase-space attraction toward an invariant 2-torus. The intersection of tra
jectories with the plane P  induces an iterative map of the circle onto itself, (b) Quasiperiodic 
dynamics fill the points on the circle, (c) When mode-locked dynamics occur, the a ttractor 
is reduced to a  finite number of points (q points for p : q locking) (ref. [39]).
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Figure 1.25: Poincare section of the Josephson junction simulator in the 5:2 mode-locked 
state. Two noisy fixed points are shown, superimposed upon a dotted curve which represents 
a nearby quasiperiodic orbit. The noise drives the attractor away from the fixed point mainly 
in the direction of the quasiperiodic orbit (ref. [40]).

system as lying on the surface of an N-torus, where N=2 for a system with two competing 
frequencies. Fig. 1.24(a) shows a  schematic of such an attractor in phase space, where the 
dynamics are attracted  onto a 2-torus. With such an attractor, it is sufficient to know the 
map which takes trajectories from one intersection of the plane P  to a successive intersection, 
known as the Poincare section. If the dynamics are strongly attracted to the surface of the 
torus shown in Fig. 1.24(a),then the locus of points which cross P  will be topologically 
equivalent to  a circle, as seen in Fig. 1.24(b). When p : q mode-locking occurs, the attractor 
is reduced to  q points, shown in Fig. 1.24(c).

The theory of Wiesenfeld and Satija suggested tha t the increase in broadband noise 
near the edge of a  mode-locked step is consistent with the dynamics of a fixed point which 
is constantly being kicked away by white noise. To test experimentally this hypothesis in 
a  controlled fashion, Crommie et at. studied a mode-locked Josephson junction simulator 
driven by white noise [40]. Fig. 1.25 shows a Poincare section of the Josephson junction 
simulator in the 5:2 mode-locked state. The dotted lines indicate a nearby unlocked at
tractor. Crommie et at. found an excellent quantitative agreement between the theory and 
experiment, although the high-frequency dynamics were influenced by degrees of freedom 
associated with relaxation onto the circle, as can be seen from the power spectrum  shown 
in Fig. 1.26.

The nonlinear system with two interacting frequencies is reduced to the study of a one
dimensional map of the circle onto itself [41]. The canonical map is known as the circle
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Figure 1.26: Predicted (solid line) and measured (dashed line) power spectrum of the angular 
coordinate of fixed points a (a) and b (b) shown in Fig. 1.25. The deviation in (b) between 
experiment and theory at high frequencies comes from fast relaxation onto the circle not 
accounted for by the theory of Wiesenfeld and Satija (ref. [40]).

map:

0n+i = 0 „ + f 2  +  ^ s in (2 !r0 „ ) (1-29)

For values of K  less than K  =  1, Eq. 1.29 is invertible, and the map exhibits both locked 
and unlocked behavior. The phase diagram is usually displayed as shown in Fig. 1.27. The 
boundaries of the various mode-locked regions are drawn in solid lines, and the regions are 
called “Arnold tongues” . The critical line K  =  1 separates a region which still has unlocked 
solutions from a region in which there is overlap; on the critical tine itself the set of points 
which are unlocked is fractal [44, 45, 46].

Well into the non-invertible regime, Eq. 1.29 exhibits a period-doubling route to chaos. 
Mode-locking expriments performed at lower temperatures showed period-doubling and 
chaos [47], and so it was believed that both the mode-locking and chaotic behavior could be 
described by a simple one-dimensional map [48].

1.7 Sw itching

At temperatures near the CDW transition, the CDW depins a t a unique threshold field 
E t . As the temperature is lowered, a second threshold E '  develops, and the threshold field 
often becomes hysteretic. The size of the hysteresis increases as the tem perature is lowered 
still further. Such behavior has been seen in all materials, although not in all samples. In 
NbSe3 , hysteresis can be induced by quenching [49] and Fe doping [50], and freshly-grown
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Figure 1.27: Arnold tongue diagram depicting mode-locked intervals in the circle map 
Eq. 1.29 as a function of 0  and K  (refs. [41, 42, 43]).

batches almost invariably show switching behavior, whereas batches aged over a period of 
months do not [51].

Switching in NbSe3  is associated with a host of phenomena not observed in the non
switching regime, such as hysteresis [53], negative differential resistance [54], anomalously 
large broadband noise [52], delayed conduction [53, 55], and period-doubling routes to 
chaos [47]. While many of the unique features of sliding CDWs had been succesfully ac
counted for by the classical Fukuyama-Lee-Rice model, none of the features associated with 
switching could be accounted for. Several attem pts have been made to understand switching 
behavior in NbSe3  in terms of phase slip [56], CDW inertia [47], and other processes [57]. 
O f the mechanisms proposed, phase slip seemed the most promising. Models which include 
phase slip were proposed by Inui et al. [56], and Marcus, Strogatz and Westervelt [58]. These 
models exhibited hysteresis, delayed conduction, and a  period-doubling route to chaos.

Two distinctive features of switching behavior are relevant to this thesis: delayed switch
ing and chaos in ac-driven switching samples. These two phenomena will be discussed briefly 
in the following two sections.

1.7.1 Delayed Switching

In investigating the properties of switching samples, Zettl and Griiner noticed that if one 
applied a  voltage pulse above threshold, the CDW does not slide immediately, but only 
after a delay [53]. Fig. 1.29(a) shows the sample voltage as a function of time in response
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Figure 1.28: Current-voltage curves in NbSe3  as a function of tem perature. As the tem per
ature is lowered, the hysteresis develops (ref. [52]).

to a  square current pulse. The CDW remains pinned until a time T , after which the CDW 
begins to  slide. Fig. 1.29(b) shows the voltage before and after the switch as a function of 
the current pulse height. The delay decreases as the height of the pulse increased above 
threshold. This delayed conduction has been observed in NbSe3  [53] and in o-TaS3  [55], 
and appeared to  be an intrinsic and distinctive feature of switching. Fluctuations in the 
switching delay for fixed bias were also observed. A distribution of switching delays was 
obtained by differentiating the average of many pulses (see Fig. 1.30). It was observed tha t 
the distribution of switching delays could be fit to a Lorentzian whose width increased as 
threshold was approached.

1.7.2 Mode-Locking and Chaos

The behavior of switching samples in the presence of ac driving is quite different from the 
non-switching regime. Instead of observing both locked and unlocked behavior, the CDW 
appears to be mode-locked always in integral mode-locked steps. Fig. 1.31 shows I-V curves 
in the presence of 15 MHz ac driving for various strengths of the driving field. The Shapiro 
steps indicate tha t the CDW is always mode-locked on an integral (p :l) step.

Chaotic behavior is also observed in the presence of combined dc and ac fields. Evi
dence for chaotic behavior comes from measurements of power spectra [48], where a period- 
doubling route to chaos is observed (see Fig. 1.32). At lower ac driving frequencies, a
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Figure 1.29: (a) Digitally smoothed response waveform to a current pulse with I  ju s t above 
It - The switching phenomena is clearly seen at a time 120 (is from the s ta rt of the pulse. 
Identified in the figure are the voltages Vi and V? (corresponding, respectively, to the non
conducting and conducting states), the time before switching T , and the switch duration r. 
(b) /  — V  curves obtained from pulse measurements similar to the one shown in (a), where 
the voltages V\ and Vn are defined. The full line is the Ohmic conductivity, while the dotted 
line is a guide to  the eye for the nonlinear conductivity. Typical values of the time to  switch 
T , for a given sample current / ,  are also shown (ref. [53]).
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Figure 1,31: Current-Voltage traces in the presence of 15 MHz sinusoidal ac driving for 
various values of the ac amplitude. Traces where voltage is swept up and down are offset 
slightly for clarity (ref. [52]).
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Figure 1.32: (a) Power spectra of the current response in the Shapiro step region of a sample 
of NbSe3. External rf  drive frequency and amplitude as in (b). (i) Kjc =  25 mV, period 
1; (“ ) Kic =  25.1 mV, period 2; (iii) =  25.2 mV, period 4; (iv) VdC =  25.5 mV, chaos, 
(b) Schematic representation of the periodicity of the current response in the Shapiro-step 
region for the sample, for forward- and reverse-bias voltage sweeps (ref. [48]).

broadband chaotic response was observed similar to the broadband noise seen in absence of 
ac driving, but roughly 10 dB larger in magnitude (see Fig. 1.33). The origin of the noise 
was a ttribu ted  to  fluctuations in the switching delays (see Sec. 1.7.1).

1.8 W h a t’s A head

This thesis focuses on the study of the many fascinating dynamical properties of CDWs. In 
a  broad sense, the aim of this thesis is to adderess and explore two related questions:

•  How can recent advances in the field of nonlinear dynamics be applied toward under
standing the physics of sliding CDWs?

•  How can the physics of sliding CDWs provide insight into the dynamics of overdamped 
spatially-extended systems with quenched disorder?
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Figure 1.33: Power spectrum  of CDW current in the presence (top trace) and absence 
(bottom  trace) of /  =  0.5 MHz rf driving. Peaks in the power spectrum  indicate the rf  
driving and harmonics due to  the response of the CDW. There is an anomalously large 
broadband noise associated with the ac-driven dynamics (ref. [48]).

The symbiotic relation between CDWs and the burgeoning field of nonlinear dynamics 
should become apparent as you read (or skim) this thesis.

C hapter 2 describes the experimental methods used in the experiments performed for 
this thesis. Chapter 4 presents time-domain measurements of mode-locking in non-switching 
NbSe3 . In chapter 3, I describe initial experiments involving delayed conduction in switch
ing NbSe3 . C hapter 4 describes time-domain measurements of mode-locking non-switching 
CDWs in the presence of combined sinusoidal ac and dc currents. Chapter 5 describes 
experiments on time-domain measurements of chaos in switching NbSe3 . In Chapter 6, a 
unified model of switching and non-switching CDW dynamics is presented. A comparison 
between predictions of this model and further experimental study of delayed conduction in 
switching NbSe3 is presented in chapter 7.

Enjoy!
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Chapter 2

Experim ental M ethods

I will now describe the experimental methods employed in this thesis. Several methods are 
common to all experiments, while others are specific to a particular set of experiments.

2.1 C ryostats and Tem perature Control

All of the experiments in this thesis were performed on samples of the CDW conduc
tor NbSe3 , in the lower CDW transition at temperatures below the Peierls temperature 
Tp2 — 59 K. The samples were cooled using a CTI Cryogenics Model 22 closed-cycle helium 
refrigerator with a zero-load base temperature of 8 K.

2.1.1 First Set-Up

In the first set-up, the samples were mounted inside a 1 1/3 in. confiat flange filled with 
1 atm . helium gas (see Fig. 2.1). The bottom half of the flange was secured to the closed- 
cycle refrigerator coldhead. The samples were sealed inside in order to minimize the effects 
of heating. Electrical feedthroughs were constructed by epoxying eight gold-plated IC socket 
pins through one half of the flange, using Stycast 2850 epoxy. Samples were mounted across
0.001 in. gold wires using silver paint to make electrical contact.

Each of the four sample feedthrough pairs were connected by a twisted pair of wires 
leading out of the cryostat. A simple bridge circuit was used to subtract the ohmic response 
of the sample. For high-impedance samples, a voltage-driven set-up was used, as shown 
in Fig. 2.2(a). For low-impedance samples, a  current-driven set-up was used, shown in 
Fig.2.2(b). The switching samples used in the experiments described in Ch. 3 were typically 
small and thin, with large (~  1 kJ2) impedances. Non-switching samples can have much lower 
impedances (<  100 12). Two diodes were used for temperature control and measurement. 
One diode was fastened near a 1/2 in. thick Cu disk that was sandwiched between the cold
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Figure 2.1: Schematic drawing of sample mount and housing.
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Figure 2.2: (a) Set-up for performing voltage-driven measurements on high-impedance sam
ples. (b) Set-up for performing current-driven measurements on low-impedance samples.
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Figure 2.3: Photograph of 4 1/2 in. conflat flange used for mounting samples.

head of the refrigerator and the conflat flange. A 50 Q heater was embedded inside the 
copper disk, next to  which another diode was attached, for controlling the tem perature.

2.1.2 Second Set-Up

The first set-up, while adequate for most experiments, had several undesirable features:

•  The twisted pairs did not form a 50 ft transmission line, and ac signals had to be cali
brated at different frequencies. In fact, large resonances often appeared at frequencies 
as low as 10 MHz.

•  Because of imperfect shielding, the twisted pairs were highly susceptible to  rf  pickup.

•  The BNC connectors needed to  be isolated from ground, making ground loops more 
difficult to  eliminate.

•  Only three samples could be examined at a given time.

In later experiments, an improved sample holder and cryostat were built which overcame 
many of the disadvantages of the first set-up. The new sample holder was constructed out 
of a  4 1/2 in. conflat flange, with 14 50 ft SMA feedthroughs, shown in Fig. 2.3. One 
feedthrough was used to send current to an internal heater; another was used to  measure



2.2. SA M P LE  G R O W TH  A N D  PR E P A R A TIO N 39

the voltage across a  temperature-sensing diode. Twelve feedthroughs were left for sending 
signals to  and from six samples. Stainless steel 0.85 in. diam eter semi-rigid coaxial cables 
were used to  make connections outside the cryostat. Samples were mounted on a ceramic 
microstripline in a  voltage-driven configuration (see Fig. 2.3). Signals were term inated at 
one end of the sample with a  50 SI resistor, and the current through the CDW  sample was 
measured via the voltage across another 50 Cl resistor.

T he second set-up had many improvements over the first one:

•  Signals were transm itted and received via 50 Cl transmission lines, yielding repro
ducible and resonanceless response from dc to beyond 500 MHz.

•  Because signals were shielded, rf pickup was almost completely eliminated.

•  Six samples could be examined during a  single cycle.

•  Because of the large therm al mass, tem perature stability was greatly improved.

To further improve the tem perature stability, two tem perature controllers were employed. 
One diode and heater were placed close to the cold head, to minimize long-timescale fluc
tuations in cooling power th a t inevitably occur in closed cycle helium refrigerators. The 
second diode and heater were placed inside the He chamber, to control and measure the 
tem perature on a much finer scale. Because of the He atmosphere, the tem perature inside 
the chambre was to good approximation spatially uniform. Because of the symmetric po
sitioning of the samples and diode, it is reasonable to assume tha t the tem perature of the 
sample was the same as the diode tem perature.

2.2 Sam ple G row th and P reparation

2.2.1 Crystal Growth Procedure

Samples of NbSe3  were grown by conventional vapor transport m ethods.1 Stochiometric 
ratios of Nb and Se were combined in a  quartz tube and sealed under vacuum. The tube 
was then heated to  allow the elements to react and form amorphous NbSe3 . The tube was 
then placed in a three zone furnace and heated to 900 K from one end for a period of 12 hours, 
so as to  “chase” the m aterial to the other end of the tube. Then, the tem perature gradient 
was reversed so th a t the material-rich end was a t 660-670 K, and a constant tem perature 
gradient of 20 K was maintained from one end of the tube to the other. Growth typically 
took place over a period of 10-15 days. The quartz tube was then allowed to  cool for a 
period of 1-2 days, and then removed.

1 A ll sam ples u sed  in  th is  thes is  were grow n by Neil N ighm an.
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Because of the central role impurities play in determining the electrical properties of 
CDW m aterials such as NbSe3 , special care was taken to ensure th a t the starting  materials, 
especially Nb, be as pure as possible. Tantalum  is the most im portant impurity in nominally 
pure Nb, so starting  m aterials were found which had less than  2ppm Ta. However, it has 
been shown by Thorne [10] th a t oxygen getters impurities, including Ta, eliminating the 
need for ultrapure starting  materials.

2.2.2 M ounting Samples

The mounting of samples is an aquired skill, and is one which does not translate easily onto 
the printed page. Special care must be taken in handling samples, for it is easy to  introduce 
strain  defects by bending them. Often the samples are quite thin, which makes them  more 
difficult to  handle. Because so few samples are of high enough quality to do measurements 
on, a  great deal of time is spent finding suitable samples. The following is a list of features 
to  avoid when looking for crystals:

•  Gross thickness steps in the cross section. Such features were shown by Maher et. al 
(find reference) to  produce large broadband noise features and multiple narrow-band 
noise peaks in power spectra measurements.

•  “Split-end” crystals. If a crystal is split a t one end, chances are th a t there is a large 
thickness step, or some other gross imperfection in the crystal.

•  Crystals which diffract light under point source illumination. 2 This is an indication 
of there being many microscopic steps which actually form a diffraction grating. Such 
features almost invariably mean that the sample will have a low-Q narrow-band noise.

•  Large, thick crystals. Such crystals almost invariably have many grain boundaries, 
and are useless for most of the experiments described in this thesis.

Having said all tha t, one might reasonably ask if it is a t all possible to find a  high- 
quality crystal. There are other ways of finding out whether a particular crystal may be 
suitable for measurements. One way is to  take scanning electron micrographs (SEMs) of 
particular crystals within a  batch of grown crystals, isolate a  desired crystal, mount it, 
cool it, and measure power spectra. However, there are many pitfalls along the way from 
finding the crystal under the SEM to measuring power spectra, and the yield is quite low. 
Nevertheless, by this method one can screen out crystals which have any of the undesirable 
qualities itemized above. Fig. 2.4 shows a picture of two crystals, one with many thickness 
steps, and the other without any visible imperfections. The SEM resolution is limited by 
the fact th a t the crystal is not well-supported physically, and vibrates easily. Fig. 2.5 shows

2T h is  fea tu re  was p o in ted  o u t to  m e by R o b e rt T h o m e .
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Figure 2.4: Scanning electron micrograph of two crystals of NbSe3 .

a close-up of a highly promising sample. Once a promising sample is found under the SEM, 
more photographs are taken at successively lower magnifications in order to  locate the crystal 
under an optical microscope. Locating the sample optically is not a straightfoward task, 
because the contrast provided by the secondary electrons may bare little resemblance to the 
contrast provided by visible light. Unfortunately, the sample shown in Fig. 2.5 got “eaten 
up” by a giant blob of sliver paint when I tried to secure it to the microstrip line.

Fig. 2.6(a) shows a low-magnification SEM picture of the sample used in the mode- 
locking experiments described in Ch. 4. Fig. 2.6(b) shows a  close-up of the sample. While 
there appear to be surface imperfections, the cross section is quite smooth. The uniformity 
of the cross section is certainly correlated with the high-Q (~  30,000) of the narrow-band 
noise measured in power spectra. The samples are particularly sensitive to heating, and 
can be damaged by excessive dc or ac applied electric fields. The danger is much greater if 
the sample is current driven, because of the potential for thermal runaway. Such was the 
case with the sample shown here. Fig. 2.7 shows a localized portion of the sample which 
melted as a result of too large of an ac drive. Surprisingly, the sample still performed better 
than most crystals with thickness steps. This result indicates tha t defects localized along 
the length of a crystal have a much smaller effect than do steps, which are more extended 
defects.
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Figure 2.5: Scanning electron micrograph of a crystal of NbSe3  with a fairly uniform cross 
section.

2.3 E lectronics

Most of the experiments involved the extraction of small signals from large backgrounds, 
so it is worth some discussion. For the experiments involving delayed conduction (Ch.3-7), 
the setup shown in Fig. 2.2 was adequate. The experiments involving combined dc and ac 
driving required more involved methods of subtraction. Fig. 2.8 shows a schematic of the 
method used to measure the signals in real time. A 50 ft rf source was split using a 6dB 
splitter. P art of the signal was combined with a dc source using a unity gain follower. The 
output of the follower was used to drive the sample. The sample output was amplified by 
a Miteq AU-1310 low-noise preamplifier with a noise figure <  1.45 dB and a bandwidth 
of 10 kHz-500 MHz. The signal was further amplified by two 13 dB Avantek GPD-1061 
amplifiers, and fed into one input of a Tektronix P6046 differential amplifier probe. The 
other part of the rf signal was split again. One component of the split signal was converted 
to ECL logic levels, and delayed using a ECL delay line. The delayed ECL signal was used to 
clock a Tektronix RTD710 digitizer exactly once per drive cycle at any specified phase. The 
other component of the split ac signal was delayed using an analog delay line, attenuated, 
and fed into the other input of the differential amplifier. The attenuation and delay line



2.3. ELECTRONICS 43

F R E E Z E

Figure 2.6: (a) Scanning electron micrograph of the crystal of NbSe3  used in the mode- 
locking experiment described in Ch. 4. (b) Close-up of same crystal.
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Figure 2.7: Close-up of the portion of the crystal shown in Fig. 2.6 which melted as a result 
of too large an applied ac drive.

allowed both the amplitude and phase of the linear response of the CDW to be subtracted. 
The subtraction was essential for bringing the signals within the range of the digitizer.

2.4 N o ise  R eduction

Along with high-speed electronics, it is essential to reduce all sources of noise. For the 
real-time measurements, one cannot use standard techniques of reducing noise, e.g. lock-in 
techniques, signal averaging, filtering. The main sources of noise for these experiments were 
the following:

•  Line-cycle noise (60 Hz and harmonics).

•  Radio-frequency noise (radio stations).

•  Digital noise (from displays, CRTs, computers, computer clocks, etc.).

•  Amplifier noise.

Various techniques were used to combat these sources of noise. Line-cycle noise was 
usually the result of a ground loop in the circuit, and could be eliminated largely by filtering 
inputs (not outputs!), and using coax-wound baluns to  shunt the ground loops. Improper 
grounding of electronic instruments could also result occasionally in line-cycle noise. Making
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Figure 2.8: Schematic drawing of subtraction circuit for experiments with combined ac and 
dc driving.
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sure tha t all instruments shared a  common ground point greatly reduced the amount of line- 
cycle noise.

Radio-frequency noise was much harder to eliminate, and required the use of a shielded 
room. Special care was taken to ensure tha t no digital instruments were in the room. Even 
well-shielded GPIB cables can track in large amounts of digital noise. The DC signals were 
generated from 16-bit D /A  converters on the computer, but were frought with clock noise. 
Pi-filters were the most successful in filtering digital noise, and they were also used to filter 
noise coming from the 10 /jA current sources used to forward-bias the temperature-sensing 
diodes.

Amplifier noise is always a problem, and choosing the right amplifiers can greatly improve 
the signal to  noise ratio. The unity-gain followers used to drive the sample can themselves 
generate unwanted noise. We used an Elantec 2004C FET buffer which had a nominal 
bandwidth of 350MHz, and was relatively quiet. Attenuating the output of the buffer 
elminated any residual noise. For amplifying output signals, the best wideband low-noise 
preamplifier we found was the Miteq AU-1310. It had a flat response from 10 kHz to 
500 MHz, and had by far the lowest noise figure. After eliminating all other sources of 
noise, one’s signal-to-noise ratio is limited by the noise figure of the first preamplifier.

2.5 Software

The software is the instrument.
The diagram is the software.
-LabVIEW  t-shirt

A few words should be said about the software used to perform these experiments, since 
they required a great deal of automation. We used a program called LabVIEW, which is 
an object-oriented programming language much like C + + , but with an emphasis on data 
acquisition and control. LabVIEW has a graphical interface, which means that instead of 
writing code as one does in most programming languages, the programs are constructed by 
wiring modules (subroutines) together from an extensive library. Because of its modular 
design, it is simple to autom ate complex tasks using LabVIEW. The top part of Fig. 2.9 
shows the “front panel” of a typical “Virtual Instrument” (VI). The VI consists of sets of 
input and outputs, which can be numbers, arrays, graphs, strings, etc. The VI shown here 
generates a noisy sine wave, calculates the Fourier transform, and plots both. These inputs 
and outputs are then “wired” together on the VI diagram, shown in the bottom  part of 
Fig. 2.9. As it says on my LabVIEW t-shirt, the diagram is the software. Because the 
VI diagram looks so much like a flow-chart, good programming techniques become almost 
unavoidable. LabVIEW makes the standard software “bug” (e.g., a misspelled variable 
name) an endangered species. Of course, one is still free to make conceptual errors.



2.5. SO FTW ARE 47

Front Panel

jNoisy Sin* Wavel

|*  Points) 

|Amp1itude|

ZD
|Frequency|

I O
Noise Strength

E E " 1

2.00
1.50
1.00
0.50
0.00

-0.50
1.00

Block Diagram

Noise
[Frequency Strength

Power

| Amplitude |
Noisy Sine 
Wave

Figure 2.9: Sample LabVIEW Virtual Instrument. The entire program took less than five 
minutes to write.
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Chapter 3

Conduction delays in switching  
NbSe3i sensitive dependence on 
initial configuration

In “switching” charge-density-wave (CDW) conductors, a voltage pulse greater than thresh
old causes the CDW to slide only after a delay r . For identical experimental conditions, we 
have found a new class of delays as long as 5 sec with fluctuations as large as five orders 
of magnitude. For large r ,  the distribution of delays N ( t ) <x  t - 7 , with 0.8 <  7  < 1.3. 
We argue that r  measures the time at which the internal strain somewhere in the CDW 
exceeds the threshold for phase slippage. The electronic history of the sample, and hence 
the distribution of initial configurations of the CDW, determines N ( t ).

Note: the reader of this thesis may wish to skip section S.4 until he or she has read 
chapter 7, in which we describe an alternate explanation for conduction delays.

3.1 Introduction

Sliding charge density wave (CDW) conductors have now been established as models for the 
study of dissipative nonlinear dynamical systems with many equally-important degrees of 
freedom. The CDW in conventional samples depins smoothly at a threshold E t . Classical 
models with many degrees of freedom have been successful in explaining the critical behavior 
of the depinning in conventional samples [59], hysteresis and non-exponential relaxations of 
the CDW polarization [60], and other observed phenomena. A central feature of these 
models is the existence of an exponentially large number of metastable states for a pinned 
CDW [12]. Switching samples depin abruptly and hysteretically. Zettl and Griiner observed
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tha t, on applying current pulses larger than threshold, the CDW began to  slide only after a 
time delay between 1 msec and 100 msec, with fluctuations of smaller than 100% from pulse 
to  pulse [53]. We report detailed measurements of the delays near threshold. We And a 
new class of long switching delays clearly separated from the shorter ones observed by Zettl 
and Griiner. These long delays may be of order seconds, and fluctuate up to 5 orders of 
magnitude from one pulse to the next for identical external experimental conditions. Delayed 
transitions occur in many driven dynamical systems, from lasers [61] to  convecting fluids. [62] 
However, we know of no physical system exhibiting delays with variability comparable to 
the long delays in switching CDWs. Our results rule out several theories of switching CDW 
conduction. We propose a  novel mechanism: the switching delay is the time during which 
the CDW evolves from one of a large number of initial configurations to  a  configuration in 
which the internal strain  is sufficiently large to tear the CDW.

3.2 Experimental Methods

Samples of freshly-grown, nominally-pure NbSe3 were mounted in a standard two-probe 
configuration. The samples were cooled in a Helium exchange gas to between 25 K and 30 K 
in a temperature-controlled closed cycle refrigerator. The rms tem perature fluctuations were 
10 mK over an indefinite period of time. In initial experiments we applied a train of square 
pulses to  a sample and measured the switching delay for each pulse. For voltages V  near the 
threshold Vt the first delay was between 1 ms and 100 ms, but every subsequent delay was of 
order 1 ms. The CDW began in an unpolarized state. The first pulse polarized the sample, 
and for every subsequent pulse the initial state of the sample was highly polarized. This 
behavior is reminiscent of the pulse sign memory effect. [63] The initial sta te  of the sample 
in large part determines the switching delay time. For all data  presented here, the remanent 
polarization was erased before each square voltage pulse with a three-second “erasing pulse" 
(discussed below) of the form V ( t ) =  ^ ( 1  -  cosQt) cos(2tt/<), with Vo =185 mV >  2Vt , 
2n/Sl  =3 sec, and /= 1  kHz. Fig. 3.1 shows the amplified CDW current response to  four 
identical voltage pulses applied to a single sample. In order to  use the full dynamic range of 
our digitizer, the ohmic current has been subtracted using a standard bridge circuit. Because 
the switching delays ranged from 1 msec-1 sec, the current was measured in logarithmic 
time intervals. The switching time was determined in software after each pulse. After the 
beginning of each pulse, a displacement current flows as the CDW polarizes, decreasing 
roughly logarithmically until the abrupt switch. The current traces are nearly identical 
before the abrupt switches. Thus the macroscopic CDW polarization P  =  f  IcDVj(t)dt  ju st 
prior to a  switch depends on the switching delay r .  Switckes do not always occur at the 
same macroscopic polarization of the CDW.
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Figure 3.1: CDW current response to four identical voltage pulses.

3.3 E xperim ental R esu lts

In presenting distributions which vary over many orders of magnitude, logarithmic binning in 
a  histogram N '(w  =  log r )  is preferable to conventional linear binning in a histogram N ( t ) .  

Fig. 3.2 shows the distribution of delays for a single sample under different experimental 
conditions. Fig. 3.2(a) shows the shift of N'(w)  from long to  short delays as V is increased 
above the threshold Vt. (K  was defined as the voltage at which 50% of the delays were less 
than 1 sec, 87.8 mV for these data. Changing the percentage criterion from 30% to 70% 
of the time shifted K  less than ±0.5%). For the smallest voltage V  =  88.6 mV, the delays 
are between 100 msec and 1 sec. A.t an intermediate value V  =89.4 mV, the distribution 
is bimodal with a peak at a few psec, a gap between 10 /xsec and 100 /isec, and a broader 
peak between 100 /rsec and 100 msec. For the highest value of V  =90.2 mV, most of the 
weight is in the peak near a few /jsec.

Near Ve, the distribution N (r)  of long delays obeys a power law with a cutoff at short 
times. Fig. 3.2(b) plots P(u>) =  l o g ^ '^ / l O '" )  for 4000 long delays at V  =  89.3 mV. It can
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Figure 3.2: Distributions of delays, (a) Dependence on V: Three distributions N'(w)  (where 
w = log r) of 1024 delays each, binned in logarithmic increments. The distribution shifts to 
shorter times as V  is increased. A gap in N'(w)  appears between 10 and 100 msec, (b) Power 
law: For r  > 10- 4  sec, N (r)  <x r~y . This is evident here because P(w) =  log1 0 (JV7 (u>)/10u;) 
lies on a straight line over four orders of magnitude (see text). Inset graph shows the 
dependence of the exponent 7  on the pulse height V. Standard error on 7  was of order 5%.
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easily be shown that, if N ( r ) oc. r 7 , then N '(w ) a  lO^1-7^  and P(w)  =  —yw  +  constant. 
P(w ) in Fig. 3.2(b) is clearly well-fit by a straight line over at least four orders of magnitude. 
A least-squares fit of a line to P(w),  with points weighted by \ /N ' (w )  and including only 
points with -0 .02  > w > -4 .1  (100 msec< t <  1 sec), gave us y. The inset shows the 
variation of y  from 0.8 to  1.2 as 7  was varied from 88 to 90 mV (sufficiently close to 
Vt that few short delays appeared). The form of N '(w )  depends critically on the erasing 
frequency / .  For 50 Hz <  /  <5 kHz, delays were uncorrelated1, indicating tha t the erasing 
procedure was effective. W ith all other experimental parameters (including any thermal or 
other noise) fixed, the width of N'(w )  for the long delays drops from four to  two orders 
of magnitude as /  is increased from 50 Hz to 5 kHz. For /  >  5 kHz, correlations develop 
between successive delays. The sensitive dependence of N'(w )  on /  shows tha t external 
noise is not the dominant cause of fluctuations in r ,  in conflict with the explanation of Joos 
and Murray. [64]

Fig. 3.3 shows the dependence of the average (r) and and standard deviation a  on the 
pulse height V  with /  =  1 kHz. Between V =88 mV and 92 mV, the average delay decreases 
by three orders of magnitude and a  is larger than (r). Near 92 mV, the gap evident in 
Fig. 3.2(b) appears. Above 92 mV, only short delays are observed, with a < (r). Note that 
the voltage at which the gap occurs is different in Figs. 3.3 and Fig. 3.2(b). We attribute 
this to an observed extremely long-term (weeks) drift in the threshold voltage. Thin, short 
samples of uniform cross-section from freshly-grown batches of NbSe3  are most likely to have 
a single switch. All measurements reported here were performed on a single sample 0.4 mm 
long with resistance 630 fi at 25 K  and 3.81 kfl at 295 K. A tem perature of 30 K was 
convenient because switching does not occur much above 30 K in virgin samples, [51] and at 
much lower temperatures heating becomes a problem. Lowering the tem perature to 25 K did 
not qualitatively change the observed behavior. Measurements were also performed on other 
samples from two growths. All samples we measured showed long and short delays with a 
gap in N ( t ) in the range 10 msec—1 msec, a power law tail in N {r)  for long delay times, 
and (r) decreasing faster than for small e, where e =  {V  — Vt)/Vt- The exact position 
of the gap and the exact form of (r)(c) vary from sample to sample. Initial observations by 
Zettl and Griiner [53] are consistent with the short delays we have observed.

3.4 D iscussion

Several theories have been proposed to explain CDW conduction in switching samples. 
Hall et al. [51] have proposed that switching samples contain a few “ultrastrong pinning

1 We calcu la ted  the  delay-delay au tocorre la tion  function  C (n )  — 2/N  y ^ j 1 t 3 T3+n for each series o f N  
delays {r3} [C (n ) defined for 0  <  n <  N / 2). If C(n)  decayed from  C(0) a  <r2 + ( r ) 2 w here a an d  ( r )  are
the  s ta n d a rd  dev ia tion  an d  average of th e  d is trib u tio n  o f r ,  to  C(n) at {r ) 2 for a ll n  >  0, th e  delays were 
defined to  b e  uncorre la ted : th is  is th e  expected  behavior for a  series o f u nco rre la ted  random  events.
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Figure 3.3: Average (r) (□) and standard deviation u (A ). Only distributions with fewer 
than 10% of delays longer than 1 sec are included. The a and (r) represented by hollow 
symbols are systematically low: some of these delays were longer than 1 sec but are included 
in the average as 1-sec delays. Each (r ) is the average of 1024 delays. The solid line 
represents (r)(e) oc e_ l (for 14=87.8 mV) predicted for the model of Strogatz et al. (ref. [65]).

centers” [66] which prevent the intact CDW from sliding. The CDW can slide only when 
the internal strains become sufficiently large to cause tears, or phase slips, in the fabric 
of the condensate. Inui et al. [56] proposed a many-body Hamiltonian embodying these 
ideas, and they numerically investigated a 1-degree-of-freedom version. Strogatz et al. [67] 
have proposed a different, exactly-soluble many-body Hamiltonian that is isomorphic to the 
mean-field x-y model. Each of these models shows delayed switching, [65] with r  a  c- J . 
For the model of Strogatz et al., 0=1 (solid line in Fig. 3.3) and for any 1-degree of freedom 
model, 0  = 1/2. Using our operational definition of Vt to define c, the average r  decreases 
faster than e-2  for 0.005 < t  < 0.05, ruling out the model of Strogatz et al. and all 1- 
degree-of-freedom models. There are no fluctuations in r  reported for the model of Strogatz 
et al.

We analyze our results by modifying successful classical models of conventional sliding

□  O' T=30 K 
f=l kHz

<T>
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CDW conduction to  include ultrastrong pinning centers. A discretized phase-dynamical 
model that has been studied numerically by a number of authors is [11, 12]

i t  -  4±izM  .  kzlL ±  + 1(I1+1 -.,_ ,) + -ft) (3.1)
u l  ”  *C| X j “  X |_ £  Z

where fc  is the phase of the CDW at the ith impurity site, x, is the random dimensionless 
position of the tth impurity, e is the dimensionless electric field, V  is the strength of the 
impurity pinning potential, and /?, is a random phase. Phase-dynamical models are only 
valid when the local strain, or phase gradient <j>' — of the CDW is smaller than a critical 
value A phase gradient larger than 4>'c will cause the CDW to tear by nucleating a 
phase vortex. [51, 56] The sparsely-distributed, extremely strong impurities that pin CDW 
in switching samples prevent the CDW from sliding even above the critical voltage for 
depinning in conventional samples. [51] In our picture, as the voltage across the sample is 
increased, the local strain somewhere in the sample will eventually exceed <f>'e. At this point, 
a large portion of the CDW begins to slide. We have assumed that, on application of a 
voltage pulse, phase- slippage does not occur until t = r .  Thus the details of the dynamics 
of phase slippage are unimportant in modeling t .  We can qualitatively explain our data 
with two simple modifications to Eq. 3.1:

•  The presence of a single extremely strong pinning center is modeled by changing the 
boundary condition to fix the phase at one end of the chain.

•  Each “spring” is assigned a breaking threshold (<j>i+i — fat =  A $  =  4>'ch where /,■= 
£<+1 — X{ is the distance between impurities. The state of asta tic  CDW in configuration 
space can be defined by the vector v = {A0i, A ^ i , ..., A^jv), where A<pi =  j — fa. 
The intersection of the planes defined by A<fo =  A <f>\ defines the surface of a “hyper- 
rectangle” 2 in the configuration space of the CDW. We call this surface the phase- 
slip boundary (PSB). The volume enclosed by the PSB contains all phase-slip-free 
configurations of the CDW. At any point exterior to the PSB, phase slippage must 
occur and the CDW must slide. The switching delay r  is then the time it takes for the 
CDW to evolve from one of an exponentially large number of metastable configurations 
to the PSB.

This simple picture qualitatively explains many of our observations.

•  Memory of previous switch: A CDW begins from a relaxed state. A pulse applied to 
this CDW will cause a switch after a relatively long delay ro and place the CDW in 
a highly-polarized configuration. A second pulse will cause a switch in a shorter time 
ri, because the highly-polarized configuration is closer to the PSB.

s Like a  hypercube, b u t  w ith  edges of unequal length .
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•  Displacement current: The current that flows before the switch in Fig. 3.1 is the 
displacement current of a polarizing CDW.

•  r  and the macroscopic polarization: The switch in this model will not always occur at 
the same macroscopic CDW polarization because the condition for switching is that 
the local phase gradient

•  Distribution of delays and erasing pulse: Each of the exponentially large number of 
metastable configurations of the CDW should take a different time to evolve to the 
PSB. Contributions to the maximum width of the distribution of delays come from 
distributions in both initial configurations and in j>\. As the erasing frequency /  is 
increased, smaller and smaller subsets of allowed initial configurations are sampled, as 
shown by the decreasing width of N ’(w).

The erasing frequency at which erasing pulses become ineffective, 5 kHz, is close to the 
reciprocal of the position of the long-time edge of the gap in Fig. 3.2(b) (t «  10-4  sec). 
Such high-frequency pulses could induce no long switches, although with amplitude 2Vt 
they repeatedly depinned the CDW after short switches. Apparently, many long switches 
are required to access a  wide distribution of initial configurations. However, to understand 
the central result of this chapter, that the switching delay is extremely sensitive to the 
initial configuration, requires dynamical simulations beyond the scope of this chapter.3 A 
clarification of dynamic issues will shed new light on the distribution and evolution of internal 
strains in CDW conductors, quantities that have been inaccessible to previous experiments.

The theoretical model proposed in this chapter assumed that phase slip was the physical 
mechanism behind switching. As will be discussed in chapters 6 and 7, there is compelling ev
idence that switching is the result of the interaction of the CDW with uncondensed carriers. 
However, several aspects of this model, such as the motion of the CDW as it polarizes [68], 
may still be applicable.

3 A deta iled  stu d y  o f th e  m odel presented  in  th is ch ap te r is presented  in  Refs. [68, 69].
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C hapter 4

M ultiple A ttractors and  
D ynam ical Solitons in 
M ode-Locked C harge-D ensity  
W aves

This chapter describes time-domain measurements of the dynamics of charge-density waves 
in the presence of applied dc +  ac electric fields. The techniques of nonlinear dynamics 
have proven especially useful in understanding much of the mode-locking behavior th a t was 
observed. Time-domain measurements have allowed us to address many outstanding ques
tions regarding mode-locking. We find tha t the dynamics of the mode-locked sta te  is in 
many respects similar to the pinned state, in which there exist many m etastable configu
rations. The dynamics tha t moves the CDW between nearby configurations is seen to be 
dominated by dynamical solitons, analogous to the solitons th a t separate nearby m etastable 
configurations in the pinned state.

4.1 In troduction

For dc electric fields greater than threshold, the CDW depins from impurities and slides 
through the crystal. As the CDW slides, it interacts with an impurity potential tha t is 
periodic in the rigid displacement of the CDW by one wavelength, generating so-called 
“narrow-band noise” (NBN) of frequency u nt>n. The application of combined dc+ac currents 
produces rich “interference” phenomena [31, 70, 71]. In general, wnbn can lock to the external 
drive frequency wex over a finite range of dc bias when the pth harmonic of wex is sufficiently
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close to the 9 th harmonic of uinbn- Previously, experiments performed on mode-locking in 
CDWs have fallen into two categories: measurements of the dc differential resistance d V /d l ,  
and measurements of the power spectrum  of the CDW voltage or current.

In the presence of combined dc+ac currents, d V /d l  contains rich structure. Complete 
mode-locking occurs [32, 36] when the velocity of the entire CDW is locked to  the external 
drive frequency over a finite range of dc bias (or external drive frequency). Complete mode- 
locking is manifested in d V /d l  as a feature with a  fiat top at the ohmic (7<jc =  0) resistance 
value flanked by negative “wings” . The negative wings occur when w„bn is “pulled” [72] 
towards wex prior to  locking. Incomplete mode-locking [70, 71, 32] occurs when a portion 
of the CDW remains unlocked, and is manifested in d V /d l  as a flat-topped peak th a t does 
not a tta in  the dc value but still has negative wings [72]. Many interference features in 
d V / d l  Me simple peaks, without fiat tops or frequency pulling. Such features have been the 
cause of some confusion in the literature. Some theories have attributed such features to 
“increased dissipation” [73] or “Shapiro anomalies” [74, 75]. In the experimental literature, 
such features have been termed “unlocked” [72], or possibly “interm ittently locked” [37].

A second class of measurements has been in the frequency domain. By measuring power 
spectra, several authors [37, 34] have observed tha t, upon mode-locking, the quality factor 
(Q =  w/Aw) of the NBN increases dramatically from its 1 ^  = 0 value to a  value tha t 
is resolution-limited. However, the NBN amplitude fluctuations, observed in the 7^  =  0 
state, often persist in the mode-locked state [71, 37]. Furthermore, the NBN amplitude 
does not increase dramatically in the mode-locked sta te  [71, 37, 34]. This has been a 
puzzling observation [34]: Fisher [35] has predicted tha t the NBN amplitude should scale 
as where £dyn is the dynamic velocity-velocity correlation length of the CDW and d  is 
the dimension, and Matsukawa [74, 75] has predicted th a t £dyn diverges in the mode-locked 
state.

Measurements of d V /d l  and power spectra have failed to provide an unambiguous iden
tification of mode-locked CDW dynamics. Four fundamental questions remain unanswered:

1. How should one define mode-locking for CDWs?

2. Are non-mode-locking mechanisms necessary to explain all the structure in d V f d l l

3. W hy do NBN amplitude fluctuations persist during mode-locking?

4. Why is there no dramatic enhancement of the NBN amplitude during mode-locking?

This chapter describes the first real-time measurements of the dynamics of a mode- 
locked charge-density wave. Poincare sections in two dimensions have been reconstructed 
from recorded time series. Some high-sampling-rate time series are also presented. These 
powerful methods have been fruitfully applied to other experimental systems exhibiting 
quasi-periodicity and mode-locking [76, 77] The outstanding questions described above are 
resolved, and several new ones are raised.
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4.2 E xperim ental Set-up

A sample of high-quality NbSe3  was driven by combined dc and ac currents I(t)  =  7dc +  
Irc cos(wext). The voltage V(t)  across the sample was amplified with an ultra-low-noise 
preamplifier. In mode-locked NbSe3 , the narrow-band noise voltage amplitude is roughly 
60 dB smaller than the ac voltage across the sample. To increase the effective dynamic range 
of our digitizer, the sinusoidal component of the voltage across the sample was subtracted 
out using a high-speed differential amplifier. The resulting signal was then further amplified 
and digitized a t intervals of the drive period T  =  2ir/uex. The resulting time series,

{V» =  V(t =  nT  +  i o) , 0 < * o < r } ,  (4.1)

was then analyzed using recently developed techniques of time series analysis.
All measurements reported here were performed in a  standard two-probe configuration, 

on a single crystal of high-purity (RRR=240) NbSe3 . The sample was mounted on the end 
of two .001” Au wires with silver paint, as described in Chapter 2. In order to minimize the 
effects of sample heating, the samples were placed in a He exchange gas (again, for details, 
see Chapter 2). This experiment was performed in the non-switching regime (T >  35 K). We 
chose to work at T=48 K, where the sample resistance has a local maximum (see Fig. 1.5)), 
so tha t slight variations in temperature would have as small an effect as possible on the 
measurements.

4.3 Experim ental R esu lts

The lower trace of Fig. 4.1 shows d V /d l  vs. 7dc for 7^= 0  at T=48 K. For this sample, 
d V /d l  drops abruptly at threshold, partially recovers, and then decreases more slowly. 
Such a d V /d l  curve was first reported in NbSe3  by Thorne ef al. [33] in a sample for which 
the Q of the NBN was extremely high, and which exhibited complete mode-locked behavior 
of very high quality.1 When biased with only a dc current such tha t w„bn — 30 MHz, the 
Q of the NBN for our sample exceeds 104. The upper trace of Fig. 4.1 shows d V /d l  for 
7ac =  1.5 mA and u iX/2it =  13 MHz. Complete mode-locking occurs up to p : q =  1 : 5 and 
small peaks occur up to 1 : 13. Such fine structure in mode-locking and high-Q NBN are 
only observed in high-purity samples that have been carefully selected and handled [34].

Fig. 4.2 shows a  high-sampling-rate trace of the current when the CDW is mode-locked 
on the 1:2 step. Most of the fundmental signal has been subtracted. The open circles 
indicate where the Poincare sections were taken. Note the rich harmonic content of the 
CDW response.

1 It h as been  recen tly  suggested  th a t  th e  shape o f th is k ind  of dV/dl  curve is a  finite-size effect [78]. T h is
behav ior h as also been observed in  very sm all sam ples of o-TaSs. See F. Ya. N ad ’, Ref. [8].
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Figure 4.1: The lower trace shows differential resistance d V /d l  vs. dc current Idc with no 
ac driving. The upper trace shows d V /d l  with ac driving. Subharmonic peaks occur up to 
wnbn : wex =  1 : 13.

Iac=1.5 (J.A

Fig. 4.3 shows Poincare sections of unlocked and locked CDW dynamics. The Poincare 
section is reconstructed by embedding the time series in two dimensions to  form vectors 
Vn =  (Vn , Vn+ r) (the “method of delays” ) [79]. Figs. 4.3(a-h) each contain 1024 points. 
Fig. 4.3(a) shows Vn versus Vn+i when the sample was biased at the middle of the 1:2 ML 
step in d V /d l .  The density of points is peaked around two well-separated period-two points. 
Fig. 4.3(b) shows Vn versus Vn + 3  on the 1:10 peak in d V /d l .  One can see tha t there are 
ten well-defined points, indicating that the CDW is mode-locked. Fig. 4.3(c) shows 1:34 
locking. Because there is a large overlap of period-34 points, we have plotted the average 
of every 34th point as open circles in Fig. 4.3(d). The small dots show every 34th point, 
the average of which is the large solid black circle. Fig. 4.3(e) shows 29:60 locking with 
r  =  14. As in Fig. 4.3(d), we have we have plotted the average of every 60th point as open 
circles in Fig. 4.3(f). The small dots show every 60th point, the average of which is the large 
solid black circle. Fig. 4.3(g) shows the Poincare section where d V /d l  shows no peak. The 
density of points is peaked along a closed curve (henceforth, “circle” ). Fig. 4.3(h) shows 
the Poincare section constructed from the same 32K record as Fig. 4.3(c), but 18,000 drive 
cycles earlier. The circle remains, but is smaller and clearly different in shape.

Fig. 4.4 displays in more detail the dynamics near the 1:2 mode-locked state. In analogy 
with the staggered magnetization in an antiferromagnet and the staggered order parameter
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Figure 4.2: High-sampling-rate measurement of CDW voltage near 1 : 2 step for /ae=1.5 f iA  
and Wac/2pi=13 MHz. The signal has been averaged 32 times in a region where the NBN 
amplitude remains constant for minutes at a  time. Circles indicate where Poincare sections 
were taken.

in a 1/2 filled Peierls system one can define a “dynamic staggered order parameter” (DSOP) 
to describe the dynamics of the 1:2 mode-locked state. One writes sn =  (—l)nv„, and

Sn =  Av[sn i S n + 1 1 —l]i ( j  =  10) (4-2)

for a suitable averaging. Ideal mode-locking would correspond to a  constant value of S n 
for all n. Fig. 4.4 shows the DSOP over 32,000 cycles of rf drive for various values of Idc- 
In Figs. 4.4(a-b) the sample was biased near the middle of the 1:2 mode-locked step. The 
DSOP is essentially constant in both traces, but the magnitudes differ. For slightly higher 
/ac than shown here, the amplitude of NBN, and hence the DSOP, can remain constant 
for several minutes [71], in contrast to some earlier observations [37]. In Fig. 4.4(c), the 
sample was biased on the edge of the 1:2 mode-locked step. The DSOP is constant over 
more than 16000 cycles, switches sign, and afterward exhibits long-term drifts in magnitude. 
In Fig. 4.4(d), the sample was biased just below the 1:2 mode-locked step. The behavior 
is intermittent and aperiodic. In Fig. 4.4(e), the sample had been damaged by excessively
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Figure 4.3: Poincare sections obtained by m ethod of delays. The driving frequency is 
wex=13 MHz.
(a) Biased a t the 1 : 2 mode-locked step, =  1.5 (iA. Inset shows strength  of amplifier 
noise, (b) Biased a t the 1 : 10 mode-locked step, =  5.0 fiA. (c) Biased a t the 1 : 34 
mode-locked step, 7^  =  5.0 fiA. (d) Average of period-34 points shown in (c) plotted as 
open circles. The small dots show points 34j ,  where j  is an integer. The large solid circle 
is the average of the small dots, (e) Biased a t the 29 : 60 mode-locked step, /ac =  5.0 fiA. 
(f) Average of period-60 points shown in (e) plotted as open circles. The small dots show 
points 60j, where j  is an integer. The large solid circle is the average of the small dots, (g) 
Biased in an unlocked region, /ac =  1-5 fiA. (h) Same as (g), but 18,000 drive cycles earlier, 
lac =  1-5 fiA.
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high rf fields . 2 The sample was biased ju st as for Figs. 4.4(a-b), bu t here the DSOP takes 
on many different discrete values, and shows concomitant locked and unlocked behavior (see 
arrows). This behavior is similar to th a t observed in samples of lesser quality.

One can construct a similar order param eter for other p  : q mode-locked states. In 
principle, if one wanted to  include all of the points, the order param eter would be complex, 
but one can keep it real by looking only at every 9 th point. In this way we define

s™ =  Vtn+no (4.3)

where 0 <  no <  q. Fig. 4.3 shows a plot of s ^ d versus d * n  for d =  33,34,35, from the 
same 32K tim e series with 1^= 1 .5  f iA  and ujac/2 p i=  13 MHz. The time series has not been 
averaged this time. The fast oscillations for d =: 33 and d =  35 indicate tha t the CDW  is 
not locked at the 1 : 33 step nor a t the 1 : 35 step. If one looks a t d  =  q = 34, one sees tha t 
it is interm ittently  locked a t the 1 : 34 step (c.f. Fig. 4.4(d)).

T he dynamics is also quite interesting near the threshold of an integrally mode-locked 
step. Fig. 4.6(a) shows the time series where the CDW is biased a t the threshold of the 0 : 1 
mode-locked step. The spikes in Vn correspond to “avalanches” , in which there is a surge 
of current. A part from the largest oscillations, the time-series is qualitatively self-similar, 
as one can see from the close-up in Fig. 4.6(b). A power spectrum  of the entire 32K time 
series is shown in Fig. 4.6(c).

We structure  our analysis around the four outstanding questions stated earlier.
(1) In the study of dissipative dynamical systems, qualitatively distinct dynamical states 

are usually associated with topologically inequivalent attractors. For systems with two 
competing frequencies, three kinds of behavior are usually observed: periodic, or mode- 
locked; quasiperiodic; and chaotic [42, 43]. Chaos has been observed only in switching 
CDW  conductors [47, 48], and will not be further discussed in this chapter. The Poincare 
sections of the attractors for periodic and quasiperiodic behaviors are, respectively, zero- 
dimensional (q distinct points for p ; q mode-locking), and one-dimensional ( “circle” ). We 
define as mode-locked a sta te  whose Poincare section reduces to  a set of points. Even in the 
presence of measurement noise, by averaging as was done in Fig. 4.4(b), such an attrac to r 
is topologically distinguishable from the circles shown in Figs. 4.4(c-d).

(2) As defined above, we observe mode-locking on all peaks in d V /d l .  Thus it is unnec
essary to  invoke non-mode-locking mechanisms to explain structure in d V /d l .  On the 1:9 
step, d V /d l  shows a simple peak and does not rise to its ohmic value. The Poincare section 
reduces to  a set of 9 points over time intervals of order 1000 drive cycles. Over longer time 
scales, the Poincare section is “smeared” by portions of the CDW th a t become unlocked. 
Mode-locking on simple peaks in d V /d l  is thus both interm ittent and incomplete.

(3),(4) Questions concerning the persistence of fluctuations and the lack of enhancement 
of NBN am plitude during mode-locking have not been linked in the past. However, they

2In teres ting ly , th e  anom alous behav ior in  d V /d l  a t  th resh o ld  was unaffec ted  by  th e  dam age.
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Figure 4.4: Dynamic staggered order parameter (DSOP) (see text for discussion) for various 
values of Idc near the 1:2 mode-locked step. Dashed lines refer to (a) Idc =  13.083/x.A, biased 
in the middle of the 1:2 step. DSOP is constant with slow modulations, (b) 7<jc =  13.034/iA. 
DSOP is different in magnitude from (a), (c) Idc — 12.984/i .A. Biased near the edge of the 
1:2 step. DSOP switches sign near n =  16000, then drifts slowly, (d) Idc =  13.131/jA. 
Biased ju st past the 1:2 step. DSOP is aperiodic and interm ittent, (e) Biased in the middle 
of the 1:2 step. The sample has been damaged by excessive rf fields. Arrows point to 
completely locked and partly locked behavior.
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Figure 4.5: Plot of every dth point of the time series shown in Fig. 4.3(d) for various 
of d. (a) d =  33. (b) d = 34. (c) d = 35.
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have a common resolution within the framework of the Fukuyama-Lee-Rice (FLR) picture 
of a deformable CDW  interacting with random impurities [80]. Theoretical studies of mode- 
locking in the FLR model have been performed by Coppersm ith and Littlewood [73] and 
by M atsukawa and Takayama [74, 75, 81]. Coppersm ith and Littlewood have concentrated 
their simulations in the regime where the external field brings the CDW  below threshold, 
and the CDW  has time to  relax towards a  pinned configuration within each cycle of the ac 
field. For the  d a ta  in Fig. 4.4, the CDW spent no time below threshold. Consistent w ith 
experim ents of Thorne [33] Matsukawa has confirmed numerically tha t mode-locking occurs 
within FLR  whether or not the CDW spends time below threshold [81]. He proposed tha t 
mode-locking is accompanied by a  dynamical phase transition, where the CDW velocity- 
velocity correlation length £dyn diverges as the mode-locked sta te  is approached.

We note th a t p  : q subharmonically mode-locked phases are g-fold degenerate: q equiva
lent a ttractors exist, each invariant only under translations by q cycles of the external drive. 
A t the mode-locked phase transition, different domains of the CDW  can fall into different 
a ttractors. Portions of the CDW in different a ttractors must be separated by a  domain 
wall. For concreteness, we consider the p : q = 1 : 2  step, where wex =  2wnbn exactly, 
although the arguments are easily generalized to the p : q mode-locked case. In the 1:2 case 
the m agnitude of the DSOP is proportional to the magnitude of the NBN. At each point in 
the sample the CDW can be in one of two attractors. Consider the following 2 hypotheses, 
which Me not rigorous but illustrate our point qualitatively.

1. A local DSOP density p p (x ) can be defined at each point in the crystal. At each x, 
P d ( x )  can take on only two values ±1, corresponding to the two degenerate a ttractors.

2. The DSOP th a t is measured in experiments is the integral of p d ( x )  over the entire 
crystal volume Q.

These hypotheses have several consequences:

1. For subharmonic mode-locking, the DSOP does not have a unique value for a  given 
set of external param eters . The measured DSOP can in principle take on any value 
between -f2 and Q. As in the pinned state, there should exist physically distinct, 
dynamically stable configurations of the mode-locked CDW. The change in m agnitude 
from Fig. 4.4(a) to  Fig. 4.4(b) is an illustration.

2. NBN need not be enhanced during mode-locking. In fact, if the physically preferred 
configurations of the CDW are ones in which roughly equal portions of the sample 
have p o  =  ± 1 , then the NBN amplitude Vnbn can actually be suppressed during 
mode-locking. It is commonly argued th a t NBN in the absence of ac driving vanishes 
in the thermodynamic limit. We believe this is also true for subharmonically mode- 
locked CDWs.
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3. During mode-locking, fluctuations in Vnbn occur if the sign of the DSOP density 
switches in a macroscopic domain within the sample. The macroscopic size and sud
den nature of the jum ps in DSOP in Figs. 4.4(c) and 4.4(e) suggest th a t the size of 
such domains is a  large fraction of the crystal size. Also, movement of the domain 
walls could account for long-term drifts such as those seen in Fig. 4.4(c).

To illustrate these ideas, we have constructed a model consisting of locally coupled circle 
maps which, although not rigorously derived from the FukuyamarLee-Rice equations of 
motion, seems to  capture the essential dynamics. The map can be w ritten as

<p(i, n + 1) =  ip(i, n) +  D +  I< sin(<p(i, n) -  /?(»)) +

D(<p(i+ 1 ,n )  + <p(i- l ,n )  -  2y>(i,n)) +

sin( p ( i,n ))  +  £ ( i ,n ) ,i  =  l , . . . ,J V imp (4.4)

The ip(i, n) represent the phases of the CDW at impurity site i a t the n th drive cycle. The 
phases are coupled by springs with spring constant D , to model the elasticity of the CDW. 
The 0(i)  are random phases of the impurities which couple to <p(i, n) with strength A". £dc 
and Aac can be thought of as the dc and ac applied fields, respectively. The term  was 
inspired by the numerical simulations of Matsukawa [81] , and can be thought of as an 
“ordering” field which tries to keep the phases aligned with the ac drive, but is frustrated 
by the random  positioning of the impurities. There is a phenomenological white noise term  
£(i, n), which is Gaussian with width a.

One can define the total CDW current as
•  W |m p  *  W im p

=  N  ¥>(*. n) - ? ( * '.»  “  1) =  T7—  (4-5*
lmP j s l  ‘‘ imp i =  1

The time-averaged current can be subtracted and the DSOP Wn defined:

Av[tu„,u)n+1, . . . ,u ; „ + t_i],ui„ =  (—l)" ( j(n )  — n ) ,k  =  10, (4.6)

ju st as in Eq. (4.2).
Fig. 4.7 plots the DSOP W n versus n. The DSOP starts  off with a constant value 0.05, 

then a t n =  900 drops suddenly to zero, recovers, and ends up a t n =  2800 in a sta te  where 
Wn is constant again but opposite in sign. Fig. 4.8 plots A p ( i ,n )  = f ( i , n )  -  tp(i,0) — nit 
for n even. The quantity A<p(i,n) represents the deviation of the phase from a metastable 
solution <p(i, 0). A soliton-antisoliton pair (localized phase gradients with charge ±e) are 
created a t n =  1000, causing the sudden jum p in the DSOP, and their propagation over the 
entire length causes the sign of the DSOP to change. As the solitons propagate, A<p(i,n) 
changes by 5r+ p o ( i) ,  where pu(i)  = <p(i, l)  — <p(i,0) is the local DSOP. The model presented 
here yields behavior th a t is strikingly similar to the experimental results, and is consistent 
with our conceptual picture.
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Figure 4.7: Plot of DSOP Wn for the coupled circle map, Eq. 4.4.

Domain walls in CDWs have in the past been shown to have their own particle-like 
attributes such as charge, mass and spin [82, 83]. The domain walls separating different 
degenerate attractors in subharmonically mode-locked CDWs are the dynamical analog 
of the solitons separating different degenerate ground states in commensurate CDWs like 
polyacetylene [83]. We speculate that domain walls we infer in mode-locked CDWs can be 
viewed as dynamical solitons. The CDW may be strained at the walls between degenerate 
attractors. In this case the dynamical solitons should carry a  charge which may in principle 
be a fraction of an electron per chain [82].

The existence of high-order mode-locking observed in Fig. 4.3(c-f) leads us to speculate 
th a t the CDW may in fact be “completely” mode-locked, as is suggested by numerical 
simulations [29]. However, a more quantitative statem ent concerning the completeness of 
the mode-locking based on the data is beyond the scope of this thesis.

In conclusion, we see tha t Poincare sections provide an invaluable tool for understanding 
physical systems that display complex nonlinear behavior involving many degrees of freedom. 
We have resolved a number of fundamental questions relating to mode-locking in CDWs. 
We have suggested that the subharmonically mode-locked CDW breaks up into domains 
separated by dynamical solitons. Clearly, many fruitful avenues for investigation remain in 
the study of mode-locked CDWs.
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Figure 4.8: Plot of A ip =  <p(i, n) — <p(i, 0) — nir for n even. A “soliton-antisoliton” pair is 
created at n =  1000, spreading quickly to the right and more slowly to the left. The phase 
changes by ir +  pp(i),  where po(i) is the local DSOP. By n =  2800, the entire system has 
shifted attractors, corresponding to an overall change in sign in the DSOP.
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C hapter 5

L ow -D im ensional Chaos and  
H igh-D im ensional Behavior in  
th e Sw itching  
C harge- D e nsity-W ave  
C onductor N bSeo

The dynamics of the switching charge-density wave (CDW) conductor NbSe3  is studied in 
the presence of combined dc and ac electric fields. At a  driving frequency of 20 MHz, the 
dynamics are both low-dimensional and chaotic, while a t lower drive frequencies (<5  MHz) 
high-dimensional dynamics are observed. Analysis of the time series provides Lyapunov ex
ponents, and an estim ate for the number of active degrees of freedom for the low-dimensional 
chaotic behavior. The principal nonlinearity which gives rise to the low-dimensional chaos 
in switching CDWs is shown to be the hysteresis in the depinning transition, ra ther than 
the interaction between two frequencies.

5.1 Introduction
Sliding charge-density-wave (CDW) conductors [84] have played a  central role in the study of 
spatially-extended dissipative nonlinear dynamical systems. In most treatm ents, the CDW 
is regarded as a classical deformable medium pinned by randomly-spaced impurities [80]. 
W hen a  dc electric field jE^c greater than a threshold Et is applied, the CDW depins and
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slides with an average velocity v. In most samples of NbSe3  the depinning transition is 
smooth. In so-called switching samples, the depinning transition becomes hysteretic a t low 
tem peratures. In the  sliding state, the interaction of the CDW with impurities produces 
current oscillations or “narrow-band noise” of frequency u»nbn oc v.

Rich dynamical behavior has been observed when the CDW is driven by combined dc+ac 
electric fields [85] in the non-switching regime. Mode-locking [86] occurs when wnt>n becomes 
locked to a  rational multiple of the external drive frequency wex over a finite range of 
parameters. In a related phenomenon known as the pulse-duration memory effect [87], a 
train  of identical square voltage pulses of width T  causes the CDW current to synchronize 
to the end of each pulse. The source of nonlinearity in these phenomena is the interaction 
between two frequencies: wnb„ and wex for mode-locking, and u nt>n and I f T  for the pulse- 
duration memory effect. It is widely accepted tha t tha t many degrees of freedom are crucial 
to an understanding of mode-locking [73] and the pulse-duration memory effect [88, 89] 
in CDWs. Our earlier experimental study [90] showed explicitly the importance of many 
degrees of freedom in the dynamics of the subharmonically mode-locked state.

Samples in the switching regime behave in a  dramatically different fashion under excita
tion by combined dc and sinusoidal ac electric fields. Previous studies reported several kinds 
of power spectra th a t are not observed in the non-switching regime. For wex/2jr >  5 MHz, 
a period-doubling route to chaos was inferred from a sequence of power spectra contain
ing structure at harmonics and subharmonics of uiex [48]. At lower driving frequencies, 
observed power spectra were broad-band, with noise amplitude much greater than  conven
tional broad-band noise, and relatively featureless between harmonics of u tx . The latter 
spectra were called “ac switching noise.” Such power spectra have never been observed in 
the non-switching regime.

In this chapter, we report a time-domain study of the currents induced in switching 
samples of NbSe3  by combined dc and ac fields. The questions we address are:

1) How many degrees of freedom are involved in the measured dynamics?
Powerful tools tha t have been developed for the analysis of chaotic time series enable one 

to answer this question based on the da ta  alone, without reference to any particular model. 
We find th a t the behavior previously identified as chaotic is in fact low-dimensional. The 
low-dimensional da ta  are consistent with the dynamics of two coupled first-order nonlinear 
ordinary differential equations with periodic driving and noise. The behavior previously 
identified as “ac switching noise” is high-dimensional, and is indistinguishable from random 
noise based on the da ta  alone.

2) W hat is the principal source of nonlinearity th a t underlies the observed dynamics?
Both the low- and high-dimensional dynamics occur only when the ac field drives the

sample repeatedly through the switch in the I - V  curve. We show that the low-dimensional 
chaos arises because the depinning time varies in a chaotic fashion from one cycle to  the 
next. This behavior is reminiscent of the delayed conduction tha t occurs on application of a
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square voltage pulse to a switching sample [91]. Such a delayed transition occurs only if there 
is hysteresis in the depinning transition. Thus we conclude th a t the principal nonlinearity 
underlying the chaotic dynamics is the hysteresis in the depinning transition, ra ther than 
the interaction between wnt,n and u tx . In the high-dimensional behavior, the depinning 
transition always occurs a t approximately the same phase of the external drive. The largest 
cycle-to-cycle variability in the high-dimensional signal occurs near the middle of the time 
interval over which the CDW is sliding. The mechanism underlying the high-dimensional 
dynamics is unclear.

The remainder of the chapter is organized as follows: in section 5.2, we describe the 
experimental techniques used. In section 5.3, we describe the time-domain measurements as 
well as other more conventional measurements such as differential conductance and power 
spectra measurements. In section 5.4, the chaotic da ta  is characterized using recently- 
developed methods of time-series analysis, and implications of our results for competing 
models of switching CDW dynamics is discussed.

5.2 E xperim ental Technique

In order to  perform time-domain measurements of CDW currents, it is im portant to  reduce 
or eliminate every source of external noise. Standard noise-reduction techniques such as 
signal averaging, lock-in amplification, bandpass filtering, etc., generally cannot be used 
because real-time information is lost or distorted. The signals of interest are quite small 
(—1—10 /jA) and high frequency (1-100 MHz); furthermore, they reside atop of relatively 
large sinusoidal signals (mainly due to the response of normal carriers). Noise reduction 
is achieved through careful shielding and by reducing input noise at the amplifier stages. 
The experiments were performed inside a  Faraday cage to  reduce rf interference from radio 
stations, computers, and other high-frequency noise sources. Only analog components were 
placed inside the cage, because the clocks from digital equipment can produce significant 
interference.

Nominally pure crystals of NbSe3  were mounted on a ceramic microstripline in a two- 
probe voltage-driven configuration. The ac signals were term inated by a 50 resistor on 
one end of the sample. The voltage across a 50 Q resistor on the other end of the sample 
was measured with a  Miteq AU-1310 low-noise preamplifier with a 500 MHz bandw idth and 
a maximum noise figure of 1.4 dB. Semi-rigid coax cables were fed directly to and from the 
microstripline launchers. The samples were sealed inside a 4 1/2 in. conflat flange filled with 
1 atm . of Helium gas to minimize the effects of ohmic heating. The sample was driven by 
combined dc and ac voltages:

V{t) = VdC +  14csin(wex0 (5-1)
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Figure 5.1: Power spectrum  of current oscillations for sample No. 1 a t T=19.3 K (R=375 
a t T=47.7 K, length=1.8 mm).

The m ajority of the fundamental signal at we* was subtracted off with a high-speed dif
ferential amplifier. The resulting signal was further amplified and digitized once per drive 
cycle using a Tektronics RTD710 digitizer, yielding a time series of the current. The signal 
was also digitized a t a much higher rate, using a Tektronics DSA602 digital signal analyzer. 
Power spectra were measured with a HP-4195A (sweeping filter) spectrum  analyzer.

Two samples (No. 1 and No. 2) from separate growths were investigated, although we 
will only present results for sample No. 1, Comparisons between the response of the two 
samples will be made where appropriate. Samples were selected which displayed a single 
switch. Fig. 5.1 shows a power spectrum  of the narrow-band-noise for sample No. 1 a t 
T=19.3 K in the absence of ac driving. The 3 dB width of the narrow-band-noise oscillations 
is approximately 103, indicating a highly homogeneous distribution of CDW velocities within 
the sample.

5.3 E xperim enta l R esu lts

5.3.1 Differential Conductance Measurements

This section describes measurements of the differential conductance as a function of tem per
ature. Because the samples were voltage-driven, the direct measurement was made of the 
differential conductance d l /d V ,  rather than the differential resistance d V /d l .  Figs. 5.2(a-c) 
show the differential conductance d l / d V  in the absence (top traces) and presence (bottom  
traces) of ac driving for three tem peratures. The frequency wex/2ir =20 MHz and amplitude 
Vac =38.8 mV were the same for all three temperatures.
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Figure 5.2: Differential conductance of sample No. 1 (R=375 0  at T=47.7 K,
length=1.8 mm) in the absence (top traces) and presence (bottom  traces) of 20 MHz rf 
driving with amplitude 14c =  38.8 mV. (a) T=47.7 K. Sample is non-hysteretic. There are 
many harmonic (e.g., 1:1) and subharmonic (e.g., 3:2,1:3) mode-locked features, flanked by 
symmetric “wings” , (b) T=28.8 K. The sample is in the hysteretic regime, as indicated by 
the arrows. The mode-locked features are highly asymmetric, and many of the subharmonic 
features have disappeared, (e) T=23.8 K. The hysteresis loop has increased in size, and 
fewer subharmonic features remain.
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In the top trace of Fig. 5.2(a), the CDW is pinned up to  a threshold voltage V<=25.0 mV, 
above which d l /d V  monotonically increases and eventually saturates. At T=47.7 K, Vt is 
unique and non-hysteretic. The bottom trace shows d l /d V  in the presence of ac driv
ing. Mode-locking occurs when the frequency of the narrow-band noise wnbn becomes 
locked to the external drive frequency wex. We define p : q mode-locking as the condi
tion wnbn =  p/q  wex. When complete mode-locking occurs, the differential conductance 
d l /d V  drops to  its ohmic (VdC =  = 0) value. The 1:1 step is almost completely mode-
locked, as is the 1:2 subharmonic step. The mode-locked steps are symmetric, and flanked 
by positive “wings” [72], which are associated with frequency pulling. There are also many 
other subharmonic features.

As the temperature is lowered to 28.8 K, the CDW conductance near Vt decreases, 
and a  second, hysteretic threshold develops at a higher value of K|C, as seen in the top 
trace of Fig. 5.2(b). The dc voltage VJ)C has been swept in both directions, as indicated by 
the arrows. The width in voltage of the integrally (i.e., p :l) mode-locked steps increases 
manyfold, while the subharmonic mode-locked steps become less pronounced. However, one 
can still see remnants of the 2:3 and 3:4 steps, for example. Another noticable feature is 
the asymmetry of the mode-locked steps. Both the integral and half-integral steps approach 
their ohmic limit slowly from the left, while the increase in dIJdV  is large and sudden on 
the right. This asymmetry does not depend on which direction the bias is swept.

Fig. 5.2(c) shows d l /d V  a t T=23.8 K. As the temperature is lowered, the hysteresis loop 
increases in size, and the subharmonic steps become even less pronounced. The half-integral 
steps still remain at this temperature, but disappear at lower temperatures.

5.3.2 Detailed form of Chaotic Currents

The solid line in Fig. 5.3(a) shows the CDW current I(t)  measured at a high sampling 
rate when the CDW is in a chaotic state. The dotted line indicates the sinusoidal current 
that would result if the sample response were purely linear. The differential amplifier has 
subtracted out slightly more than the purely linear response, and thus the dotted line is 
180° out of phase with the true linear response. The measured response is very close to 
sinusoidal for a fraction of each cycle, indicating that the CDW is pinned. The depinning 
transition is clearly visible in each cycle as a sharp increase in the current. The difference 
between the solid and dashed lines in Fig. 5.3(a) gives the instantaneous CDW current, the 
integral of which is plotted below in Fig. 5.3(b). The CDW displacement u(f) is plotted 
in units of the CDW wavelength Acdw (where Acdw is determined from the fact that the 
CDW is locked at the 2:1 step). There are very large deviations in the total displacement 
from one cycle to the next, and yet the CDW current is uniform over long times. The 
amount of relaxation in the pinned state varies greatly from cycle to cycle, but patterns of 
motion are clearly visible. Fig. 5.3(c) plots the difference in current I ( t ) shifted in time by
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Figure 5.3: (a) High-sampling-rate measurement of CDW current versus time, after subtrac
tion of most of fundamental a t 20 MHz. Parameters are wex/27r=20 MHz, =  38.8 mV, 
Vdc =163.6 mV. The CDW is mode-locked at the 2:1 step. Dashed lines indicate ohmic 
component of the signal. Note tha t after subtraction, effective ohmic resistance is actually 
negative. The difference between the solid line and the dashed line is the excess current 
due to sliding of the CDW. Open circles indicate where time series was obtained, (b) CDW 
displacement u(t), measured in units of the CDW wavelength A c d w >  versus time, obtained 
by integrating the CDW current in (a), Fluctuations in the cycle-to-cycle CDW displace
ment are of order 100%, but the time-averaged displacement is two wavelengths per drive 
cycle, (c) Deviation of CDW current I(t)  for two “nearby” initial configurations displaced 
in time by 67\ There is a sensitive dependence on initial conditions characteristic of chaotic 
behavior.
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six periods of the ac driving. The deviation is initially small, indicating tha t the CDW is 
nearly in the same configuration, but small differences are magnified in time, and one sees 
the sensitive dependence on initial conditions that is indicative of chaotic behavior. A more 
quantitative measure of the chaotic nature of this attractor will be presented in Sec. 5.4

5.3.3 Period-Doubling Route to Chaos

The real-time traces plotted in Fig. 5.3(a) contain more information on a  short time scale 
than is necessary for characterizing a chaotic attractor. For example, the fact that the CDW 
is pinned for more than half of the drive cycle means that half of the time series conveys 
almost no information. In fact, by sampling the current just once per drive cycle, one can 
obtain almost all of the essential information about the state of the system. If the resulting 
time series

{/„ =  /(* =  n T  +<„), n  =  1,2,..., N }  (5.2)

is plotted versus a control parameter, one obtains a bifurcation diagram. Fig. 5.4(b) shows 
such a diagram: N  = 128 points of the time series for the drive parameters in Fig. 5.2(c) are 
plotted vertically for 150 evenly-spaced values of Vdc, yielding the characteristic signature 
for a period-doubling route to chaos. The corresponding values of d l /d V  are plotted above, 
in Fig. 5.4(a). The first period-doubling bifurcation occurs at Vdc =  154 mV. The inset 
to Fig. 5.4(a) shows the power spectrum of the time series for Vdc =  156.3 mV. A sharp 
peak occurs at 10 MHz, flanked by narrow-band noise peaks which suggest that the CDW 
is not locked. The separation increases until Vdc — 159 mV, where a second period-doubling 
bifurcation takes place. The bifurcation in the tower branch is too narrow to be seen here. 
At Vdc =  162 mV, the onset of chaotic behavior is observed. The chaotic signal splits into 
two bands at Vdc =  166 mV, and ends with an abrupt increase in the time-averaged current.

Embedding the time series in two dimensions by plotting In versus In+i yields a visual 
reconstruction of the Poincare section of the attractor. Figs. 5.5(a-d) show such an em
bedding for four values of Vdc■ The corresponding measurements of the power spectra are 
plotted below, in Figs. 5.5(e-h). Fig. 5.5(a) shows period-one behavior at Vdc=153.1 mV, 
characterized by a single point in the Poincare section. The lower right corner shows the 
Poincare section when the CDW is locked in the 0:1 state (i.e., not sliding). The power spec
trum  below in Fig. 5.5(e) shows a peak at the fundamental frequency 20 MHz, as well as 
some narrow peaks due to  the mixing of the narrow-band noise with the drive. One can also 
see a fairly broad feature at 10 MHz. This is a “noisy precursor” of the period-two behavior, 
indicating that the CDW is close to a bifurcation point [92]. Fig. 5.5(b) shows the system 
a t the Vdc=157.4 mV, after the first period-doubling bifurcation, with two corresponding 
period-two points. The power spectrum below in Fig. 5.5(f) shows a large peak at 10 MHz, 
corresponding to  the period-two behavior. There are also two fairly broad features centered 
a t 5 MHz and 15 MHz. These are noisy precursors of the period-4 behavior. Fig. 5.5(c)
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Figure 5.4: (a) Close-up of d l / d V  near 2:1 mode-locked step. Inset shows power spectrum  
of time-series obtained at Vdc =  156.3 mV. (b) Bifurcation diagram constructed from time 
series. Successive points of time series plotted versus Vdc (see text for discussion).

shows period-four behavior at Vdc—161.3 hiV. The points are highly elongated, indicating 
th a t they are close to being unstable. The corresponding power spectrum  in Fig. 5.5(g) 
shows four peaks, and there is a noticeable rise in the noise level, indicating tha t the system 
is near to becoming chaotic. Fig. 5.5(d) shows a chaotic attractor at VdC=  163.6 mV. The 
two leaves of the attractor visible in the left half are the rem anants of the two barely-stable 
fixed points on the left half of Fig. 5.5(c). The attractor is approximately one-dimensional, 
with one fold visible on the left. The steep slope on the left is indicative of chaos. The 
power spectrum  in Fig. 5.5(h) is now broadband with broad peaks remaining at multiples 
of / / 4  [48].

Measurements were made on a second sample No. 2. Both the period-doubling cascade 
and the shape of the chaotic attractor seen for sample No. 2 are nearly identical to th a t of 
sample No. 1. We conclude tha t the chaotic behavior is unrelated to defects or peculiarities 
of particular samples [93].

Figs. 5.6(a-d) show a similar period-doubling cascade for T=28.8 K near the 2:1 mode-
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Figure 5.5: Time-delay reconstruction of Poincare section from time series, and correspond
ing analog power spectra (below) at T=23.8 K and ajex/2ir=20 MHz (see text for discussion). 
(a,e) Vdc=153.1 mV. (b,f) 1^=157.4  mV. (c,g) Kdc=  161.3 mV. (d,h) 1^=163.6 mV.

locked step, corresponding to the d l / d V  curve plotted in Fig. 5.2(b). The corresponding 
analog power spectra are plotted below in Figs. 5.6(e-h). In Fig. 5.6(a), the first period- 
doubling bifurcation has just occured. The power spectrum  in Fig. 5.6(e) shows a peak at 
10 MHz, corresponding to the period-two behavior, but also shows severed unlocked peaks, 
indicating the CDW is unlocked. In Fig. 5.6(b), the period-two behavior is quite large, 
and the two points themselves are on the verge of becoming unstable. The same noisy 
precursors are evident in Fig. 5.6(f) as in Fig. 5.5(f). The period-four behavior is quite 
robust in Fig. 5.5(c), and the power spectrum  in Fig. 5.6(g) shows distinct peaks which 
are roughly 30 dB above the noise floor. In Fig. 5.6(d), the period-four points are nearly 
unstable, as evidenced by their elongated shape. In the power spectrum  in Fig. 5.5(h), one 
can see evidence of period-8 behavior. The period-doubling sequence ends before the onset 
of any chaotic behavior. At higher tem peratures, such as T=32.7 K, the hysteresis loop is 
negligibly small, and only period-two behavior is observed.

5.3.4 High-Dimensional Dynamics
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Figure 5.6: Time-delay reconstruction of Poincare section from time series, and correspond
ing analog power spectra (below) at T=28.8 K (see text for discussion). (a,e) % c=  141.4 mV. 
(b,f) Vdc=145.7 mV. (c,g) Kdc=148.6 m V .(d ,h ) 1^=150.2  mV.

At driving frequencies below a characteristic crossover frequency (for sample No. 1, a t about 
5 MHz), the behavior is quite different. The top trace in Fig. 5.7(a) shows the differential 
conductance a t u ex/2ir=4 MHz and Vac=43.0 mV. Time series were measured a t two phases 
with respect to  the rf driving, one near the depinning transition, {J[jepm}, and the other near 
the maximum of /( f ) , {/£”“ }. Fig. 5.7(b) shows the rms magnitude of the measured time 
series for both {/jJepm} and {/™ax}. Also shown is the rms noise from 0 MHz to 20 MHz, 
measured by an analog spectrum  analyzer. Multiples of the fundamental frequency 4 MHz 
were not included in the average. The curves are shifted arbitrarily for clarity, but the scale 
for both time series is the same. For values of Vdc near threshold, we observe broadband, 
almost featureless “ac switching noise” which can be 10-20 dB larger than the broadband 
noise observed in the absence of rf driving [48]. This noise is observed in {/£”“ }, but not 
in {/jjepin}. Likewise, at higher Vdc, low dimensional behavior is observed in {/£jepin}, while 
{ /“ **} shows essentially no signal.

Figs. 5.8(a-b) show high-sampling-rate measurements of the current versus time for two 
different values of Vdc- The dashed line indicates the response th a t is linear in the voltage 
K(f). More than the ohmic contribution to  the current has been subtracted, so tha t the
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Figure 5.7: (a) Differential conductance d l / d V  a t T=23.8 K for u/ej(/2 jr= 4  MHz,
V'ac=43.0 mV. (b) RMS noise from both analog power spectrum  and time series measured 
at two different phases with respect to  the drive. For {/£"“ }, the signal is large near the 
depinning threshold, while for {I{Jepin} the signal becomes larger a t higher values of Vdc.
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Figure 5.8: (a) High-sampling-rate measurement of CDW current versus time, after sub
traction of most of fundamental, for regime where high-dimensional signal is large (see text 
for discussion). Param eters are uielt/2?r=4 MHz, Vac — 43.0 mV, Vdc =117.1 mV. Dashed 
lines indicate ohmic component of the signal. Note th a t after subtraction, effective ohmic 
resistance is actually negative. Circles indicate time-series obtained near depinning transi
tion {/^epm}. Diamonds indicate time-series obtained near maximum of I{t)  {/™ax}. Same 
as (a), bu t for Vjc =202.2 mV, where the low-dimensional signal is large.
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actual time-dependent voltage V (t) is 180° out of phase with respect to the dashed line. In 
Fig. 5.8(a), the CDW is depinned for a  small fraction of the drive cycle, while in Fig. 5.8(b), 
the CDW is depinned for more than half of the drive cycle. Time series were measured at two 
phases with respect to the rf driving, one near the depinning transition ({/£*pm}, illustrated 
by circles), and the other near the maximum of /(<) ({/£"“ }, illustrated by diamonds).

Fig. 5.9(a) shows a  close-up of d l /d V  in a region near threshold. Figs. 5.10(a-c) show 
visual reconstructions of the attractor for values of Vdc indicated by the letters A-C in 
Fig. 5.9(a), respectively. The main plots show the measured signal for { / " “ }. The corre
sponding analog power spectra are plotted below, in Figs. 5.10(d-f). In Fig. 5.10(a), the 
CDW is pinned, and the corresponding signal is small. The only structure in the power 
spectrum shown in Fig. 5.10(d) is the fundamental frequency a t 4 MHz. In Fig. 5.10(b), 
the signal is large, and with very little structure. There are correlations in the time series, 
as indicated by the slightly elliptical shape of the Poincare section. The lower right insets 
of Figs. 5.10(a-c) show the Poincare reconstruction from time series {/^epm}. The signals 
are very small, mostly due to the fact that the digitization has occured slightly before the 
depinning transition. However, from Fig. 5.8(a) one can see that even at the depinning tran
sition there is essentially no cycle-to-cycle deviation, suggesting that the high-dimensional 
signal does not originate from dynamics occuring near the depinning transition.

Fig. 5.9(b) shows a close-up of d l /d V  at a higher field. Figs. 5.11(a-c) show visual 
reconstructions of the attractor for values of VdC indicated by the letters A-C in Fig. 5.9(b), 
respectively. The main plots show the Poincare reconstruction from time series {f£epm}. 
The corresponding analog power spectra are plotted below, in Figs. 5.11(d-f). In this regime 
of Vdc the period-doubling sequence is recovered. Figs. 5.11(a-c) show period-one, period- 
two, and chaotic behavior, respectively. The shape of the chaotic attractor is similar in 
shape to the one shown in Fig. 5.5(d). The lower right insets of Fig. 5.10(a-c) show the 
Poincare reconstruction from time series {/™ax}. The signal at this phase of the rf drive is 
not larger than the instrumental noise.

5.4 A nalysis

More quantitative methods of time series analysis [94] were applied both to the time series 
plotted in Figs. 5.5(d) and 5.10(b). Of these methods, we found direct nonlinear modeling 
of the time series the most useful [95], We used a local-linear predictor [96, 97], trained on 
the first half of a segment of the data, and computed the average rms error for one-step- 
ahead prediction on the second half the the data segment. Fig. 5.12(a) shows this error 
as a function of embedding dimension for the data of Fig. 5.5(d). There is no significant 
reduction of error for embedding dimensions larger than m  =  2, suggesting that an adequate 
model of the dynamics can be constructed with only two degrees of freedom. Furthermore,
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Figure 5.9: (a) Close-up of d l /d V  near region which shows high-dimensional behavior. 
Letters A-C refer to  Poincare sections shown in Figs. 5.10(a-c), respectively, (b) Close-up 
of d l /d V  near region which shows low-dimensional behavior. Letters A -C refer to Poincare 
sections shown in Figs. 5.11(a-c), respectively.
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Figure 5.10: Time-delay reconstruction of Poincare section from time series, and correspond
ing analog power spectra (below) a t T=23.8 K and wex/2?r (see text for discussion). Main 
plot in (a-c) shows Poincare section for time delay near maximum of /(<) {/£ '“ '} , while 
lower right corner shows Poincare section for time delay near depinning transition {/„epm} 
(see Fig. 5.8). (a,d) Fdc=103.8 mV. (b,e) 1^=117.1  mV. (c,f) Vdc=118.6 mV.
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Figure 5.11: Time-delay reconstruction of Poincare section from time series, and correspond
ing analog power spectra (below) at T=23.8 K and uiex/2ir=i  MHz (see text for discussion). 
Main plot in (a-c) shows Poincare section for time delay near depinning transition {/^epin}, 
while lower right corner shows Poincare section for time delay near maximum of I(t)  { /” “*} 
(see Fig. 5.8). (a,d) 1^=199.7  mV. (b,e) Vdc=201.2 mV. (c,f) 1^=202.2  mV.
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Figure 5.12: (a) One-step-ahead rms forecasting error versus embedding dimension m for the 
low-dimensional da ta  shown in Fig. 5.5(a). The data sets are taken from non-overlapping 
segments of length N  = 4096. Predictions on points in the last half of the segment are based 
on local linear fits using the A =  30 nearest neighbors in the first half of the segment. (This 
value of k was chosen because it gave the best predictions.) Different segments of the original 
data set are indicated by squares (□). The same computations were made with surrogate 
data, indicated by pluses (+ ). (b) Forecasting error as a function of forecasting time T  for 
length N  =  4096 segments of the experimental time series (□) and for surrogate data  (+ ). 
The approximately exponential increase in error with T  suggests a  positive metric entropy 
in the dynamics of about 0.6 bits per time step. Note tha t no such behavior is observed 
in the surrogate data sets, (c-d) Same as (a-b), except for the data  shown in Fig. 5.10(b). 
This data  is evidently high dimensional, and is numerically indistinguishible for surrogate 
data.
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the m  =  2  dimensional local linear model makes predictions with an average rms error of
0.4/iA, which is about 7% of the signal’s rms amplitude. This provides a measure of the 
underlying noise in the signal. We define “noise” operationally here to mean unpredictable 
signal. It is of course possible that some of this noise is modeling error (though we obtain 
essentially the same result with both longer and shorter data segments), but we can in any 
case assert tha t the signal to noise (power) ratio is at least 23 dB. This signal to noise ratio 
should be compared tha t obtained by comparing the time series for Fig. 5.5(a) with that 
for Fig. 5.5(d), which is 30 dB. Also shown in Fig. 5.12(a) is the same computation applied 
to “surrogate data.” These are random data sets which have been artificially generated 
to have same Fourier power spectrum and amplitude distribution as the original data [98]. 
The large difference between results on real and surrogate data indicates tha t the nonlinear 
structure detected by the prediction algorithm is significant.

In Fig. 5.12(b), we compute forecasting error as a function of predict-ahead time T  and 
find tha t the error increases approximately exponentially for small T.  Following Ref. [97], 
we associate this rate of increase with the largest Lyapunov exponent, and estimate its 
value at about 0.6 bits per period. We have found this value to be robust (±  0.1 bits) to 
variation in embedding dimension, number of nearest neighbors in the local linear prediction 
algorithm, and the length of the data segment. We take this positive value as an indication 
of chaos [99].

The high-dimensional time series shown in Fig. 5.10(b), by contrast, exhibits no evidence 
for nonlinear predictable structure. Figs. 5.12(c-d) show the variation of prediction error 
with embedding dimension and predict-ahead time, respectively. Comparison of these com
putations with those for surrogate data shows no significant difference. We have compared 
this data to surrogate data using several other discriminating statistics, including estimated 
correlation dimension, and again are unable to make a distinction. From the data  alone, 
there is no evidence to reject a null hypothesis of linearly correlated noise. However, the the 
high-dimensional signal is clearly larger than the instrumental noise, and is thus attributed 
to  the dynamics of the sliding CDW.

In earlier papers on ac-driven switching CDWs, the low-dimensional chaos was associated 
with mode-locking of the narrow-band noise [48]. Mode-locking in both the switching and 
non-switching regime was analyzed within the paradigm of the “circle map” [41], a one
dimensional map of the form:

0n+i =  +  f t+  ^ -s in 2 ir9 n , (5.3)

where 9„ corresponds to the (single coordinate) phase of the CDW at t =  nT.  Mode- 
locking in the non-switching regime corresponded to K  < 1, in which Eq. (5.3) exhibits 
mode-locking but no chaos, while mode-locking in the switching regime corresponded to 
K  > 1, where period-doubling and chaotic behavior is observed in Eq. (5.3). A more 
sophisticated treatment was proposed by Inui et a I  [56], which included amplitude degrees
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of freedom and exhibited a period doubling route to  chaos. Common to  both models is the 
fact th a t the period-doubling route to  chaos occurs when the system  is mode-locked.

O ur results indicate th a t the period-doubled and chaotic behavior have little to do with 
the current oscillations th a t give rise to  mode-locking in the non-switching regime. The 
m agnitude of the chaotic signal is much larger than the narrow-band noise, and comparable 
to  the m agnitude of the switch. The chaotic signal occurs only when is of a  m agnitude 
th a t repeatedly drives the CDW through the switch. A close exam ination of Fig. 5.3 shows 
th a t the phase (tim e modulo T )  a t which the CDW switches varies from cycle to  cycle. These 
variations in the switching times account for almost all of the chaotic signal measured a t 
the Poincare sampling times.

There is also evidence th a t the CDW is not mode-locked during period-doubling. The 
power spectrum  of the time series (5.2) at V̂jc=  156.3 mV, shown in the inset to Fig. 5.4(a), 
simultaneously displays an instrum entally narrow signal a t uiex/2= 1 0  MHz, and 35 kHz 
wide peaks a t 10 ±  1.3 MHz. We interpret the signal a t 10 MHz as a period-doubling 
of the  switching phase, and the other peaks as unlocked narrow-band noise (modulo the 
driving frequency) mixed with wex and wex/2 . An alternative explanation is th a t period- 
doubling of the narrow-band noise in a  mode-locked portion of the sample gives rise to 
the instrum entally narrow peak at wex/2 . We find this scenario unlikely due to  the large 
separation of the narrow-band noise peak from any observed subharm onic of u ac. Also, the 
am plitude of the peak a t u ex/2  does not fluctuate in time, but is a direct function of the bias 
Vdc, as seen in Fig. 5.4. Am plitude fluctuations are generic in subharmonically mode-locked 
samples a t higher tem peratures, and have been interpreted as transitions between different 
mode-locked configurations [1 0 0 ].

The origin of the high-dimensional behavior, and the associated “ac switching noise,” is 
less clear. The relevant experim ental results are the following:

1. High-dimensional behavior occurs only for wex below a characteristic frequency. This 
frequency is sample-dependent. For sample No. 1, it was near 5 MHz, while for sample 
No 2, it was near 10 MHz.

2. The high-dimensional behavior occurs when the CDW is partly  locked.

3. There are oscillations in the amplitude of the noise as a function of dc voltage, with 
a period of oscillation equal to approximately twice the width of a single mode-locked 
step, as shown in Fig. 5.8(b).

4. The noise is large when sampled near the maximum of V(t), and small near the 
depinning transition.

5. The noise is large near threshold, and decreases a t higher Vdc■
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Observations (1) and (2) may be related, because mode-locking is generally more difficult 
to  achieve at very low frequencies. It is actually somewhat surprising that mode-locking 
occurs at all in switching samples at these low driving frequencies. Since a  switching CDW 
jumps to a  high velocity when it depins, the narrow-band noise jumps in at a  frequency 
tha t is typically several tens of MHz. In a n :l mode-locked state, the CDW must advance 
n wavelengths per drive period. If the characteristic narrow-band noise frequency in the 
sliding state is much higher than the external driving frequency, then a  low-order mode- 
locked step must correspond to the CDW being depinned for only a small fraction of the 
driving period. This can be qualitatively seen in Fig. 5.8(a).

It is possible that the high-dimensional behavior only occurs in “imperfect” samples, in 
which the cross-section exhibits one or many thickness steps, the mechanism being similar 
to that which produces broadband noise in the absence of rf  driving [30]. Given the delicate 
nature of low-order mode-locking at low driving frequencies, it is possible tha t the high
dimensional behavior is originating from unlocked portions of the CDW. As Ktc is increased 
and the CDW is depinned for a larger fraction of a cycle of the external drive, the mode- 
locking actually improves (see d l /d V  in Fig. 5.7(a)) and the noise amplitude decreases 
(although at high fields the noise is small even when the CDW is unlocked.) Observation 
(5) is consistent with the imperfect sample hypothesis, because broadband noise displays 
a similar dependence on Vdc- Even if the high-dimensional behavior is caused by sample 
imperfections, one must still explain why the amplitude of the ac switching noise is 1 0 - 2 0  dB 
larger than broad-band noise induced by a dc voltage. Observation (3) is quite mysterious, 
but may be related to systematic variations of nodes and maxima in the current oscillations 
relative to the fixed phase at which the current is recorded.

Observations (4) and (5) suggest that the high-dimensional noise and the low-dimensional 
behavior have different physical mechanisms. The fact that the noise is high-dimensional 
implies that many degrees of freedom are involved, in contrast to the low-dimensional chaos.

Several models of switching CDWs have been proposed in the literature, [41, 56, 57] 
including our own recently proposed unified model of switching and non-switching CDW 
dynamics [101]. However, none of these models has yet been successful in capturing even 
the qualitative behavior that we have observed. The reproducibility of the chaotic attractor 
shown in Figs. 5.5(d) provides strong quantitative constraints on any theory of switching 
CDW dynamics.

Fig. 5.3 provides clues to a  qualitative understanding of the origin of the chaotic response. 
The cycle-to-cycle variation of the phase of the switch is reminiscent of previous experiments 
on the response of switching CDWs to square voltage pulses [91]. In those experiments, 
the CDW switched only after a  delay r  which varied over several orders of magnitude for 
identical external parameters. The interpretation was that the r  were determined by the 
configuration of the pinned CDW prior to the voltage pulse. The phase of the switch in the 
chaotic state may also be determined by the previous configurations of the CDW. The low
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dimensional nature of the chaotic response leads us to  speculate th a t the underlying physics 
is related to  a  spatial average over the configuration of the CDW, such as the polarization 
of the  CDW. The global coupling proposed in the unified model [101] may be responsible 
for slaving the many degrees of freedom in the CDW to their spatial average.
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C hapter 6

Unified M odel o f Sw itching and  
N on-Sw itching  
C harge- D ensity- Wave 
D ynam ics

In this chapter I will argue tha t the dynamics of both switching and non-switching charge- 
density waves can be described by the classical Fukuyama-Lee-Rice model when the inter
actions with normal carriers are taken into account. We have constructed a circuit represen
tation of the model and have performed numerical simulations in one dimension. We find 
switching in the limits of strong pinning or large normal-carrier resistance, consistent with 
experiment.

6.1 In troduction

The nonlinear dynamics of sliding charge-density waves (CDWs) has been studied exten
sively in the past fifteen years. Two classes of CDW behavior have been observed exper
imentally. Conventional, or “non-switching” behavior is characterized by a smooth, non- 
hysteretic I - V  curve and a unique threshold field for sliding. Much of the non-switching 
behavior is well described by the Fukuyama-Lee-Rice (FLR) model [80], which treats the 
CDW phase as a classical field and ignores amplitude fluctuations of the CDW order pa
rameter.

So-called “switching” behavior [57] is characterized by an abrupt, hysteretic transition 
into the sliding state. Switching was first observed in NbSe3 , and subsequently in other ma-
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terials such as TaS3 , (NbSe4 )3 .3 3 l> K0 .3 M0 O3  and Rbo.3 Mo0 3 - It was observed later that 
switching could be induced in NbSe3  by doping with iron, or by quenching [49], and that 
freshly-grown samples displayed switching while aged crystals did not. Based on these obser
vations, switching in NbSe3  has been associated with the presence of “ultrastrong” pinning 
centers. At lower temperatures, two threshold fields, the lower one non-switching and the 
upper one switching, have been observed in semiconducting materials such as K0 3 M0 O3 , 
and also in NbSe3  in the presence of a magnetic field [102]. The hysteresis increases as the 
temperature is lowered.

There have been a multitude of explanations for switching behavior [57]. Based on the 
importance of ultrastrong pinning centers, several models of switching have been proposed 
in which the dynamics of the CDW amplitude, ignored in the FLR model, are considered [67, 
56]. The role of normal carriers is also ignored in most treatments of CDW dynamics. Tucker 
showed tha t normal carriers determine the time scale of dielectric relaxations of the pinned 
CDW [19]. P. B. Littlewood, elaborating on a two-fluid model of Sneddon [103], suggested 
that the inclusion of normal carriers could lead to two threshold fields and bistability of the 
CDW velocity, as observed in the semiconducting materials [19]. It was believed tha t the 
inclusion of normal carriers did not alter the form of the original FLR equations of motion, 
except to change the effective damping [104, 103].

In this chapter, we show that when the effects of normal carriers are properly incorpo
rated into the FLR model, we obtain an additional new global coupling term. Non-switching 
behavior occurs in the limit of very weak pinning or small normal-carrier resistance. Switch
ing occurs in the limits of strong pinning or large normal-carrier resistance. Both limits are 
consistent with experiment. We show how this model can be understood intuitively in 
terms of an electrical circuit. Numerical simulations in one dimension have been performed, 
consistent with our analytical results.

where pc is the condensate density, p0 is the CDW amplitude (held fixed), is the
CDW phase, and fcp is the Fermi wavevector. The CDW current is given by

6.2 D erivation o f the M odel

In the one-dimensional FLR model, the charge density is written as 

p(x) = pc + p0cos[Qx +  <£(x,t)], Q - 2 k F, (6 .1 )

£ *
jcDV/ (z , t )  = ---- <f>{x,t).

7T
( 6 .2 )

Ignoring inertial effects, the FLR equation of motion is

JV

7 0 ^  =  A'V2 - p o Y '  V(x  -  Xi) sin[Qx + 4>\~ ~ E (x , t )7T
(6.3)

1 = 1
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where 7 0  is the CDW damping constant, K  is the CDW elasticity, V (x  — i:,) is the potential 
due to an impurity a t site *j, JV is the number of impurities, and E(x, t) is the local electric 
held. At finite temperature, normal carriers are excited across the Peierls gap, leading to  a 
linear conductivity tr with an Arrhenius temperature-dependence. The total current in the 
presence of a spatially uniform external field (ignoring for simplicity displacement currents) 
is

j ( x , t )  = jcD w (x,t)  + j N (x ,t)

= -~4> (x,t)E(x,t) ,  (6.4)
If

Incompressibility and current conservation (V • j =  0) [105, 103] yield

jcD w (M ) +ijv(*><) =  O'cdwOM))* +  ( jN (x ,t))x (6.5)

where { )x denotes a spatial average. Solving for E (x ,t) ,  one obtains

E(x, t) = E0 -  — [(^(x, t))x -  <j>]. (6 .6 )
jrtr

The equations of motion can be written in a discretized form easily suited to  numerical 
simulation by taking V'(r) =  Vo6(x — x.) and integrating out between impurities,

( 7 0  +  7i )fa =  K V 2fa + W  s i n -  f t )  +  V +  7 1  [ii)i  (6.7)

where fa represents the CDW phase at impurity site i, 7 1  =  e~/Tr2cr is the Ohmic damping 
constant, L is the average distance between impurities1, W  =  —poVo/L, V  =  —eEo/ir, 
Pi =. Qxi is a random variable mod 2ir, and ( ),■ denotes an average over impurity sites 
i = 1,2, ...,JV . 2 We will henceforth work in units where W  =  L  =  1. Viewed in the 
reference frame of the moving CDW [106, 19], the global coupling term  yi(fa(t))i is by 
definition zero. But the CDW moving frame is not an inertial one, hence there will be a 
“fictitious” force yi(fa (<)),-. It is for this reason that we work in the inertial reference frame 
of the underlying lattice.

While the discretized version of Eq. 6.3 in the absence of normal carriers is often depicted 
in terms of balls and springs on a washboard, it also has a  representation as an electrical 
circuit, as is shown in Fig. 6.1(a) for N  =  3. The impurity potential seen by the CDW
is represented by a nonlinear capacitor, which has the Q — V  relation V  = sin(fa — Pi),
where fa represents the charge on the ith nonlinear capacitor. The domains are coupled by 
capacitors with capacitance C  =  K ~ l , and are biased with a constant voltage V. The total 
CDW current is equal to  the average of the currents through each nonlinear capacitor.

Fig. 6.1(a) demonstrates some of the unphysical aspects of the FLR model in the absence 
of normal carriers. Experimentally, one cannot specify the voltage across each single domain,

: O ne need n o t approx im ate th e  im purity  d istance by its  average. See Refs. [12, 11]
2N ote th a t  Eq. 6.7 follows d irectly  from  Eq. 6.6 when the  condition  V • j =  0 is satisfied.
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Figure 6.1: (a) Circuit representation of Fukuyama-Lee-Rice model (discretized version of 
Eq. 6.3) with N  =  3 impurities (see text for discussion). The impurity potential seen by the 
CDW is modeled by a nonlinear capacitor with V  =  sin(<fo — /?,), where 4>i is the charge on 
the ith  capacitor. The total CDW current is (&(<))(. (b) Circuit representation of Eq. 6.7. 
The voltage sources are replaced by resistors, and a  voltage N V  is applied across the ends 
of the circuit. Arrow indicates how a local CDW current is compensated by a backflow of 
normal electrons, thus conserving the total current. This circuit reduces to (a) in the limit 
7i — 0.
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nor can one measure the current a t each domain. R ather, one specifies the voltage across 
the entire sample, and measures the current, or vice-versa. Also, it is impossible to  perform 
current-driven numerical simulations of the FLR  model, making it difficult to  compare with 
many experiments. Such difficulties are remedied by including normal carriers. Fig. 6 .1 (b) 
shows a  circuit representation of Eq. 6.7. T he voltage sources are replaced by resistors3  

with resistance 7 1 , and the voltage across the ends of the network is N V  (here, N = 3). The 
arrow indicates how a local distortion of the CDW is compensated by a backflow of normal 
carriers. The circuit in Fig. 6 .1 (b) reduces to  tha t of Fig. 6.1(a) if one lets 7 1  approach zero 
while holding V  fixed (although the normal current becomes infinite).

6.3 Switching
One of the  consequences of the  additional term  in Eq. 6.7 is switching behavior. T he global 
nature of the coupling term  7 i(^ ,(f))j acts like an effective field which can “bootstrap” 
the CDW into a high-conduction sta te  at a threshold field Vn.  The physical origin of the 
global coupling can be seen by imagining a situation where the CDW is pinned and V  is 
close to  Vti- A local current flow, as indicated by the arrow in Fig. 6.1(b), will cause the 
voltage to  drop across the center domain, thereby increasing the voltage across all the other 
domains. This situation is unstable for sufficiently large a  =  7 1 / 7 0 , and can cause the 
CDW  to  switch to  a  high-conduction state. Once in the conducting state, the CDW  can 
continue to  slide until the voltage is lowered to  Vn <  V«. We have performed numerical 
simulations of Eq. 6.7 for various values of a  and K  in a  system with N =.50 impurities. 
Figs. 6 .2 (a,b) plot the time-averaged CDW current J c d w  versus V  for various values of 
a  and K .  Fig. 6.2(a) shows th a t Vji is independent a, while Fig. 6.2(b) shows th a t Vt 2 is 
insensitive to  K ,  provided Vt\ is sufficiently smaller than V^.

Fig. 6.3 shows how the size of the hysteresis loop ( V<2 — Vti ) /V ti varies with a  and K .  
In the strong-pinning regime, the hysteresis is immesurably small until a  ~  1 . In the weak- 
pinning regime, the crossover to  significant hysteresis occurs a t a larger value of a,  and is a 
decreasing function of K  for fixed a.

Much of the previous analysis of the FLR model carries over to  Eq. 6.7, provided the 
system  is in a  particular pinned state. The reason is simple: in a  stable pinned configu
ration, 7 j{0 ,•(*))» =  0, and hence, the location of the singular points in phase space will 
be independent of a.  So, for example, the FLR arguments concerning the dependence on 
the upper threshold field Vt 2 on K  for a = 0  remain valid for a  >  0. For K  «  1 (strong 
pinning), the threshold field Vi2 «  1, while for K  »  1 (weak pinning), V{2  a  A'4/(d— in 
d  dimensions [80]. Fig. 6.2(a) shows tha t Vt 2 is indeed independent of a ,4  and Fig. 6.2(b)

3 O ne c a n  m odel th e  effects o f  d isp lacem en t c u rre n ts  by  p lac ing  a  cap a c ito r  in  p a ra lle l w ith  th e  n o rm al 
re sis to r, a n d  C O W  in e r tia  w ith  a n  in d u c to r  in  series w ith  th e  C D W  resis to r.

4If  th e  voltage is  sw ept quickly, will n o t be zero , a n d  hence Vt2 will decrease. S uch  b eh av io r is seen
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Figure 6.2: (a) Plot of time-averaged CDW current versus V  for various values of a  and 
K  =  0.16 (see text for discussion). The upper threshold Vt2 is independent of a . (b) Plot of 
I - V  curves for various values of K  and a  =  10.24. The lower threshold Vh is independent 
of K  for Vti sufficiently smaller than 1^2.
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Figure 6.3: Plot of hysteresis as a function of a  and K , with N  = 50. Measurements were 
made at each grid intersection. Hysteresis for strong-pinning begins near a  =  1. For weak 
pinning, the onset of hysteresis occurs at a much larger value of a , and is smaller.

indicates that Vtz has the correct dependence on K ,  even for large a . Once in the slid
ing state, the picture changes dramatically. Estimating VJi requires some manipulation of 
Eq. 6.7. One can re-express the global term by averaging both sides over the impurities i, 
obtaining

7o(<Mi =  (sin.(d>i -  Pi))i  +  V  (6.8)

and hence,

7ofc =  KV2<t>i +  sin^ ‘ ~ 0i) + a (a[n(*J ~  +  y  (69)
1 +  a

Eq. 6.9 looks similar to Eq. 6.7, but now the global coupling term  involves the spatial 
average of sin(<£,• — f3j). The time- and space-averaged pinning force is related to the time- 
averaged CDW current J c d w  by (sin(<£; — (3i))i,t — 7o*fcDw — V. In the pinned state, 
(sin(0j — «  —V, and «  0. In the high-held limit, (sin(<j>j — 0j))j,t »  0 and
{(j>)i ~  V. The high-field limit occurs a t smaller V  for larger a , as can be seen from 
Fig. 6.2(a). The pinning potential is scaled by (1 +  a ), so tha t Vn <x ( 1 + a ) -1 for a  1. In 
the limit K  oo , one can view Eq. 6.8 as an equation of motion for ${t)  =  (<£,(!)),• =  
for all j .  In the limit a  —* oo, one also obtains Eq. 6.8 for <$(t) =  4>j(t) +  Cj, where Cj are

num erically, a n d  h as in  fact been  observed experim entally . See Ref. [107].
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“frozen” . Thus, a t low tem peratures, the CDW behaves as a  rigid object. [19] Switching 
behavior is the rule rather than the exception for the semiconducting CDW materials.

As T  —*• 0, To, dissipation arising from phason-phason and phason-phonon scatter
ing [108], tends to  zero, while 7 1  becomes exponentially large [103]. In terms of the circuit 
representation, this amounts to  removing the bottom  resistors and shorting the top ones, 
leading to a  rigid CDW whose differential resistance becomes zero a t threshold. Such be
havior has in fact been observed in K0 .3 M0 O3  and other semiconducting materials [109]. We 
believe th a t our model also accounts for switching behavior in NbSe3 , although the situa
tion is complicated by the presence of a  chain in the unit cell which remains metallic a t low 
tem peratures. The increase of the hysteresis loop width Vt2  — Vn as tem perature is lowered 
is consistent with increasing a  a t fixed K  in our model. This is in apparent conflict with the 
fact th a t the normal resistance of NbSe3  decreases as tem perature is lowered. The conflict 
suggests tha t the CDW is screened more effectively by quasiparticles on the CDW chain 
than  by normal electrons on a neighboring chain, and th a t 7 1  cannot be simply assigned to 
the normal resistance in NbSe3 . We believe that the velocity discontinuities, or phase-slip 
centers, observed in switching samples of NbSe3  are indicators of strong pinning centers but 
are not responsible for switching.

Another consequence of the global coupling term  in Eq. 6.7 is the non-uniqueness of 
the sliding state. It has been shown that the FLR model obeys a so-called “no-crossing 
condition” [1 1 0 ], which requires the sliding sta te  to be unique and the transition to the 
sliding sta te  to be non-hysteretic. It is simple to show by construction th a t the global 
coupling term  violates this nocrossing condition, hence allowing multiple sliding states for 
a  fixed voltage V.  Such multiple sliding states are observed numerically for large N ,  and 
N  as small as 3. Fig. 6.4 shows the total current J(t)  versus time for two distinct sliding 
states corresponding to V  =  1.0 in a  system with N  =  3. The magnitude of the current 
oscillations (narrow-band noise) are larger for the solid curve, but the time-averaged current 
is smaller. The effect of added noise might cause hopping between metastable running states, 
yielding long-term fluctuations of the narrow-band noise frequency, first noticed as such by 
B hattacharya et al. [37].

The generalization of Eq. 6.7 to  higher dimensions may yield two threshold fields, as 
observed experimentally. Abo, observed differences between current- and voltage-driven 
experiments in switching samples may be borne out by analogous numerical “experiments” . 
O ther phenomena associated with switching [57], such as period-doubling, negative differen
tial resistance, and delayed switching, should be explored within the context of this model. 
Preliminary numerical experiments show th a t Eq. 6.7 exhibits period doubling, as well as 
delayed switching5. The global coupling term  in Eq. 6.7 will very likely have a profound ef
fect on the critical dynamics near threshold [35], even in parameter regimes where switching

5 See C h . 7
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Figure 6.4: S teady-state to tal current J( t)  versus time for two different initial configurations 
and identical param eters N  =  3, I< =  0.01, 7o =  1, and a  =  1.28. The to ta l current 
J  =  1.490 for the solid curve, and J  =  1.497 for the dash-dotted curve.

does not occur. This global coupling is present in many other nonlinear dynamical systems 
with many degrees of freedom, such as Josephson junction arrays [111, 112] and coupled 
laser systems [113], and its nonlinear dynamics should prove to be fascinating.
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C hapter 7

Im pulse R esponse o f the  
Sw itching  
C harge-D ensity-W ave  
C onductor NbSeo: A N ovel 
D elayed Transition

When a switching CDW conductor is driven with a rectangular voltage pulse, the CDW 
begins to slide only after a delay r .  We present detailed measurements of the impulse 
response of the charge-density-wave (CDW) conductor NbSe3  as a function of the pulse 
height, tem perature, and initial configuration. We find tha t the average conduction delay f  
has an activated tem perature dependence for pulse heights sufficiently far above threshold: 
f  oc exp(E a/ k BT),  where Ea = 24.0 ± 3 .8  meV, comparable to the CDW gap. We have also 
performed numerical experiments based on a  model which includes the interaction of the 
CDW with uncondensed electrons. W ithin this model, we can account for the polarization- 
dependence of the threshold for sliding, and the dependence of the conduction delay on the 
pulse height. If we assume tha t the ungapped carriers in NbSe3  do not screen the motion of 
the CDW, then the Ahrrenius temperature-dependence of the delayed conduction can also 
be explained. The excellent qualitative agreement between theory and experiment provides 
a compelling argument th a t switching behavior arises from the interaction of the CDW  with 
uncondensed carriers.
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7.1 In troduction

Charge-density-wave (CDW) conductors display a remarkable diversity of nonlinear phenom
ena [114]. The source of the nonlinearity arises from the interaction of the CDW, commonly 
treated as an elastically deformable medium [80], with randomly spaced impurities. The 
incommensurate CDW is pinned by these impurities, but slides and carries current when an 
applied electric field exceeds a threshold Et ■ At temperatures near the Peierls transition 
tem perature Tp,  the threshold is unique and non-hysteretic. At lower temperatures, the 
interaction of the CDW with thermally excited quasiparticles becomes as im portant as the 
interaction with impurities in the semiconducting CDW materials such as K0 .3 M0 O 3  and
o-TaS3 - Experimental evidence for this includes the observation that the CDW conductivity 
above threshold becomes proportional to the number of normal carriers [17], and the presence 
of a broad overdamped mode (associated with internal modes of the CDW) which freezes 
out a t low tem peratures [115]. At still lower temperatures a second, hysteretic threshold 
E?  develops, above which the CDW slides almost without damping [116, 117, 18, 109].

It has been known for some time tha t normal carrier screening increases the effective 
CDW damping [103], but it was Littlewood who suggested that this interaction might explain 
the existence of two threshold fields and the hysteretic behavior in the semiconducting 
materials [19]. Much of the behavior observed in the semiconducting compounds are also 
seen in NbSe3 , which remains metallic at low temperatures. So-called “switching” behavior, 
in which the CDW depins suddenly and hysteretically, is observed in some, but not all, 
samples of NbSe3  [57]. Several attem pts have been made to understand switching behavior 
in NbSe3  in terms of phase slip [56], CDW inertia [47], and other processes [57]. We have 
proposed a model [101] similar to Littlewood’s, in which the uncondensed carriers are shown 
to produce a global coupling term into the equations of motion for the CDW, giving rise to 
hysteresis in one dimension, and two threshold fields in two dimensions [118].

Charge-density-wave dynamics in the switching regime differs markedly from the non
switching regime; included are the observation of negative differential resistance and related 
instabilities [52], anomalously large broadband noise [52], and period-doubling and chaotic 
behavior in the presence of combined dc and ac fields [48, 93]. A particularly unique and 
puzzling phenomenon was observed by Zettl and Griiner, who found that if one applies a 
voltage (or current) pulse above threshold, the CDW will begin to slide only after a delay 
r  [53]. Delayed conduction has also been observed in o-TaS3  [55]. In a previous paper [91], 
we observed th a t the distribution of switching delays displayed a  sensitive dependence on 
the initial configuration, and tha t the delay could vary over five orders of magnitude for 
nominally identical experimental conditions.

The phenomenon of delayed conduction provides a stringent test for competing models 
of switching CDW transport. Here we present the main results of a detailed experimental 
and numerical study of the phenomena of conduction delays in CDWs. In section 7.3, we
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describe experiments which have investigated the phenomenon of conduction delays as a 
function of temperature, pulse height, and initial configuration. Our main results are as 
follows: Near the threshold for sliding, we observe a broad distribution of “long” delays r, 
whose standard deviation exceeds the average, and whose average f  depends quite strongly 
on the pulse height. As the pulse height is increased there is a  distinct crossover to  “short” 
delays, in which the standard deviation is below the average. The short delays decrease 
approximately exponentially with pulse height. The delay at the crossover between long 
and short delays (or the delay for a fixed fraction above threshold) displays an Ahrrenius 
temperature dependence with an activation energy Ea comparable to previous measurements 
of the CDW gap. The switching time <5W (defined as the time taken for the CDW current to 
rise from 10% to 90% of its asymtotic value) displays a similar temperature dependence. We 
have also performed experiments in which the initial configuration was prepared in specific 
ways. The first method involved heating the CDW crystal above the Peierls transition and 
allowed it to cool in zero field. The second method involved applying a negative pulse to 
the CDW. In both cases, we observed a lower threshold for sliding when a  positive pulse 
was applied starting from the relaxed configuration.

In Sec. 7.4, we describe numerical “experiments” on delayed conduction. The model we 
simulate is a variant of the model of switching and non-switching CDW transport discussed 
in Ref. [101]. In this variant, both the interaction between the CDW and normal carriers 
and the non-uniform spatial distribution of impurities are taken into account. We observe 
delayed conduction, and explain its origin in the model, as well as the dependence of the 
threshold field on the initial configuration, the temperature dependence of the conduction 
delay r  and the switching time tivl. We also observe good qualitative agreement between 
the dependence of the delay time r  with pulse height. The agreement between experiment 
and theory provides strong support for the model, as well as a compelling argument that 
ungapped carriers in NbSe3  play a negligible role in screening CDW deformations.

7.2 Experim ental M ethods

The experiments were performed on three samples of NbSe3  at temperatures 1 8 K < T < 3 3 K  
All three samples displayed a single, clean switch. In this paper, we will present mostly the 
results for a single sample, but will summarize the results for the other samples where 
appropriate.

The samples were grown by conventional vapor transport methods. Switching samples 
of NbSe3  generally are obtained in freshly-grown batches, but we have found that cooling 
the samples in liquid nitrogen and/or storing them in vacuum greatly prolongs the life of 
a switching batch. The samples were placed inside of a conflat flange filled with 1 atm . of 
Helium gas, in order to minimize ohmic heating of the sample, and cooled using a closed-
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cycle helium refrigerator. The samples were mounted in a two-probe configuration on a 
ceramic 50 Ohm  microstripline term inated by 50 Ohm resistors a t each end. The conflat 
flange can hold up to  six samples a t a  time, which was im portant because the success rate in 
finding high-quality samples is quite low. Tem perature stability was somewhat problem atic, 
because of the uneven cooling power of the refrigerator, bu t this difficulty was overcome by 
using two pairs of tem perature sensors and heaters, one near the coldhead, and one inside 
the conflat flange. W ith this method we were able to  achieve a tem perature stability  of 
±10  mK over an indefinite range of time. The samples were driven by a  pulse generator 
with a rise tim e of 5 ns.

7.3  E xp erim en ta l R esu lts

At tem peratures near the Peierls tem perature Tp2=59 K, the CDW  depins smoothly a t a 
threshold E t . As the tem perature is lowered, the CDW conductivity near Et  decreases, and 
a second threshold develops a t a higher field E t" . This threshold becomes hysteretic, and the 
w idth of the hysteresis loop increases, as the tem perature is lowered further. Fig. 7.1 shows 
the current as a  function of applied voltage for sample # 1 , a t tem peratures ranging from 
28.2 K down to  18.8 K. Due to the low impedance of the sample (32 Ohms a t T = 20  K), the 
voltage across the  sample differs in the sliding and pinned sta te . The width of the hysteresis 
loop increases as the tem perature is lowered. The ohmic resistance of the sample decreases 
with tem perature in this range, whereas the sliding sta te  conductivity is approximately 
independent of tem perature.

In the first set of experiments, a one-second voltage pulse Vp was applied to  the sample, 
followed by a  two-second interval with zero voltage, as depicted in Fig. 7.2. The CDW 
current was digitized over the range 0.1 psec-1 sec, and the delay r  was determ ined by a 
com puter algorithm. The switching time <sw was also measured from the resulting current 
trace. Typically, 1024 delays were measured for a  given Vp and tem perature.

7.3.1 Distribution of Delays

Figs. 7.3(a-d) shows a histogram of the conduction delays for various tem peratures T  and 
pulse heights Vp. The various histograms are offset for clarity. We define as threshold Vth 
the pulse height for which half of the pulses do not result in CDW  conduction. O ur main 
results do not depend critically on this choice for Vth- For T =19.8 K, Vyh=14.96 mV, as 
seen in the top trace of Fig. 7.3(a). As Vp is increased, the distribution remains broad, 
bu t begins to narrow relative to its average near Vp=15.31 mV. Above this pulse height, 
the distribution remains narrower, and the average decreases much less rapidly. Similar 
behavior is observed in Figs. 7.3(b-d).
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FLgure 7.1: I - V  curves at various tem peratures for sample No. 1 (length =  0.4 mm; ohmic 
resistance =  32 Ohms a t T =20 K). The onset of hysteresis occurs near 28 K, although the
I - V  curve is double-valued at higher tem peratures due to  the finite impedance of the voltage 
source. The transitions to and from the sliding states are not vertical, due to the 50 Ohm 
impedance of the voltage source and the 50 Ohm term inating resistors. As the tem perature 
is lowered, the ohmic (low field) resistance decreases, and the hysteresis increases.
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Time

Figure 7.2: Schematic representation of the impulse response experiments. The sample is 
driven by a one-second voltage pulse of height Vj,, followed by a two-second wait period. 
The CDW current is then digitized, and the conduction delay r  and switching time taw are 
determined from the current trace. The experiment is repeated 1024 times for various values 
of Vp and a t different temperatures.

The crossover from a fairly broad distribution to a much more narrow one can be seen 
more clearly if one looks at the average delay f  and standard deviation <r as a function of 
Vp. Figs. 7.4(a-c) show the average delay and standard deviation versus the reduced pulse 
height £ =  (Vp — V * ) / V *  for the three samples which were studied. For values of e below a 
sample- and temperature-dependent crossover value eco. the distribution of “long” delays is 
quite broad, and the average delay t depends sensitively on £. Associated with £co is a fairly 
distinct crossover a t time rco to “short" delays, in which f  depends much more weakly on 
Vp, and for which the standard deviation <r is much smaller than f . This crossover time is 
more pronounced in samples # 2  and # 3  than in sample # 1 . The dependence of the short 
delays on £ can be fit fairly well to a power law f  oc e~s with 6 as 2 for sample # 1 , but 
samples # 2  and # 3  clearly appear to fit an exponential form much better.

7.3.2 Temperature Dependence of Delays

The conduction delays display a very strong dependence on temperature. By changing the 
tem perature over a few degrees, the average delay can change by several orders of mag
nitude. Figs. 7.5(a-c) show the average delay t versus reduced pulse height £ at various 
tem peratures for samples # 1 -3 , respectively. As the tem perature is increased, the aver
age delay decreases. The tem perature dependence of eco is very much sample-dependent, 
remaining essentially constant for sample # 1 , decreasing with tem perature for sample # 2 ,
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Figure 7.3: Distribution of delays as a function of Vp and temperature. For Vp close to 
the threshold for sliding, the distribution of delays is broad. As Vp increases, there is a 
crossover to a  much narrower distribution, (a) T=19.8 K. (b) T=21.8 K. (c) T=24.8 K. (d) 
T=27.0 K.
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Figure 7.4: Plot of average switching delay f  (□) and standard deviation er(A), for samples 
# 1 -3 , respectively. Near threshold, the delays are “long” : f  depends strongly on the reduced 
pulse height e, and the standard deviation a  on the order of f . At larger e, the delays become 
“short” : the standard deviation falls below the average, and the dependence of r  on Vp is 
much weaker. There is a fairly well-defined crossover time rco which separates the two 
regimes, (a) Sample # 1 . (b) Sample # 2 . (c) Sample #3 .
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Figure 7.5: Average switching delay f  versus e for different tem peratures. The delays 
decrease monotonically as the tem perature is increased, (a) Sample # 1 . (b) Sample # 2 . 
(c) Sample # 3 .
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and apparently increasing for sample # 3 . These sample-to-sample variations may have to  
do with the fact th a t the distribution of delays is bimodal in many samples [91]; the pres
ence of only a  small fraction of “long delays” may overwhelm an otherwise smaller average, 
as is the case for Fig. 7.5(c) a t T=31.0 K. The exponential dependences of f  on e seen in 
samples # 2  and # 3  are more robust a t lower tem peratures, becoming less dependent on e 
as f  approaches a  critically small value (3 ft sec for sample # 2 ).

The switching time t sw displays a similar dependence on tem perature. Fig. 7.6 shows 
typical short switches for sample # 1  a t four different tem peratures, for values of e slightly 
above eco. As the tem perature is increased from 19.8 K to 27.0 K, t decreases by more than 
two orders of magnitude. The switching time tsw decreases in a  similar fashion. The switch
ing time tsw, while highly dependent on tem perature, displays no observable dependence on 
e.

The tem perature dependence of both fco and t9W are shown in Figs. 7.7(a-b). Fig. 7.7(a) 
shows an Ahrrenius plot of r co versus inverse tem perature for three different samples. The 
d a ta  are clearly fit well by straight lines, with a mean activation energy Ea =  24.1±3.2 meV. 
The switching time <9W also appears to behave in an activated fashion (with mean activation 
energy E a =  24.0 ± 3 .8  meV), as shown in Fig. 7.7(b). The activation energy is comparable 
(i.e., within factors of two) to  more direct measurements of the CDW gap, [119, 120, 121] 
as well as measurements of the activated behavior of the CDW current in NbSe3  below E%> 
by Adelman et al. [122].

7.3.3 “M elting” the CDW

We have also performed experiments in which we prepared the initial configuration of the 
CDW in various ways. One method tha t we have used previously [91] involves applying a 
sinusoidal signal to  the CDW of the form V(t)  =  Vo(^)(l — cosQt)cos(27r/<), where 2 x /f l =  
3 sec and /  ranged from 100 Hz to 100 kHz. The disadvantage of this method of preparing 
the initial configuration is th a t one has little intuition of what the final configuration of 
the sample might be, and there is no guarantee that the configuration will be the same for 
every pulse. A conceptually simpler method of preparing the initial configuration is the 
following: first, the sample is heated above the Peierls tem perature, in effect “melting” the 
CDW. Next, the sample is allowed to  cool slowly a t zero electric field, to a final tem perature. 
The CDW should then be in a highly reproducible configuration, and one can investigate 
the impulse response beginning from this configuration. Several one-second pulses are then 
applied as in the earlier experiments.

Fig. 7.8 shows the time evolution of the current for two successive pulses (pulse 1 and 
pulse 2) a t various values of Vp and T =20 K for sample # 1 . The initial configuration of 
the CDW was prepared as described above. The traces for different values of Vp are offset 
for clarity, but there is no offset between pulse 1 (squares) and pulse 2 (circles). The top
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Figure 7.6: Experimentally measured CDW current versus time for a typical “short” delay 
at four different temperatures. The four traces are offset vertically for clarity. Note that 
the time scale for both r  and tsvf scale together (i.e., the curves look similar but shifted on 
a logarithmic scale).
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switching time tsw for the same samples as in (a). Solid lines are fits to the same functional 
form as in (a).



7.3. E X P E R IM E N TA L RESU LTS 115

 ■ r.Lri;-
• S i a V . V  - ' V 08S & A '

£
6

i niiiq i i mi q i I uiMf 1 1 iiiMf i i ni«| i i mib

T=20.0 K
Vp=14.14 mV lOOjlA

V =14.19 mV p

n«aayr.wgftW W tfy/.'rSB m

V =14.73 mV
.P

V =15.00 mV 
P

V =15.45 mVn

uutL i imid i nuiJ
1 0

r 2
1 0 u

Time (sec)

Figure 7.8: Current versus time for various values of Vp, for two different initial conditions. 
Pulse 1 (□) is the response after heating the sample to 70 K and cooling down to 20 K over 
a  period of 600 sec. Pulse 2 (o) started  3 s after the end of pulse 1. The current traces for 
different Vp are shifted for sake of clarity. See text for a detailed description.
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Figure 7.9: Final current versus pulse height Vp for two successive pulses (1 and 2) after 
heating the sample above the Peierls tem perature (T «70 K) and allowing it to cool to 
T = 20  K at zero field. The dashed line represents the I - V  curve for slow ramping. The 
threshold for switching is significantly lower for the first pulse.

two traces show the current versus time for VJ,=14.14 mV. At the end of both pulses the 
CDW remained in the pinned state. For pulse 1, there is a large polarization current, which 
appears to  decay abruptly near 30 us, and disappear completely by 10 ms. This polarization 
current is not observed for pulse 2. At V^,=14.19 mV, one sees a similar polarization current 
for pulse 1, and the CDW remains in the sliding state. After approximately 100 /is, even 
though there is no clear switch, the current has reached an approximately steady state 
with the CDW sliding. The second pulse shows no polarization current, and remains in 
the pinned state. Similar behavior is also observed at VJ,=14.73 mV, although the time 
a t which the polarization current decreases has decreased. At Vp= 15.00 mV, one observes 
delayed conduction in pulse 2 a t 100 ms. The conduction delay shortens as Vp is increased to 
15.45 mV, consistent with earlier experiments. The response to  pulse 2 and successive pulses 
is qualitatively indistinguishable from the response of the CDW when its initial condition 
was not specially prepared.

The initial configuration of the CDW appears to have a profound effect on the pulse- 
driven threshold for sliding. Fig. 7.9 shows a plot of the total current through the sample 
a t the end of the first and second pulses versus Vp. The dashed line indicates the hysteresis 
loop obtained from a slowly ramped I - V  trace. For pulse 1, the CDW slides when Vp is
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Figure 7.10: (a) Current versus time for two successive pulses (1 (□ ) and 2 (o)) a t various 
values of Vp, after a 1 s depolarizing pulse of strength Vdep. (a) Vdep =-4.18 mV. (b) 
Vdep =-8.36 mV.

near the middle of the hysteresis loop, while for pulse 2 and successive pulses, the CDW 
slides only if Vp exceeds the threshold obtained from the slowly-ramped I - V  curve.

T he polarization currents described above, as welt as the polarization dependence on the 
threshold for sliding, were reproduced in sample # 2 , and were not checked for sample # 3 .

7.3.4 “Depolarizing” the CDW

A similar experiment was performed in which the CDW was prepared by a  one-second pulse 
of strength  Vdep, followed by two seconds at zero bias. Several one-second pulses were then 
applied as in the earlier experiments. Figs. 7.10(a-b) show current traces for two values of 
Vdep- As in Fig. 7.8, the traces for different values of Vp are offset for clarity, but there is no
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offset between pulse 1 (squares) and pulse 2 (circles). In Fig. 7.10(a) Vdep =  -4 .1 8  mV. At 
Vp =  14.87 mV, there are no measurable polarization currents for pulse 1, in contrast to the 
behavior for Fig. 7.10. As Vv is increased, we observe no statistically significant difference 
between pulse 1 and pulse 2. At Vp =  14.95 mV, switching occurs for pulse 1, but not for 
pulse 2, while a t Vp =  15.05 mV, the situation is reversed. At Vp =  15.23 mV, both pulse 1 
and pulse 2  produce a switch a t almost exactly the same time.

The situation is different when the magnitude of Vd<p is increased to  -8.36 mV, as shown 
in Fig. 7.10(b). The current traces are essentially the same for both pulse 1 and pulse 2 a t 
Vp =  14.23 mV. At Vp =  14.32 mV switching occurs for pulse 1, but not for pulse 2. At 
Vp — 15.05 mV both pulse 1 and pulse 2 produce switching, although one can see th a t the 
delay is much longer for pulse 2. The switching time <sw is approximately the same for both 
pulses.

Figs. 7.11(a-b) show plots of the total current through the sample at the end of the first 
and second pulses versus Vp for the two values of Vciep corresponding to Figs. 7.10(a-b), 
respectively. The dashed line indicates the hysteresis loop obtained from a  slowly ramped 
I - V  trace. In Fig. 7.11(a), there is no appreciable difference between pulse 1 and pulse 
2, while Fig. 7.11(b) clearly shows that the threshold for switching* is somewhere near the 
middle of the hysteresis loop for pulse 1, and near the threshold for the slowly ramped I - V  
curve for pulse 2 and successive pulses. Behavior similar to Fig. 7.11(b) was observed for 
higher values of % ep, with no appreciable change in the threshold for pulse 1. For pulse 
1, the CDW  slides when Vp is near the middle of the hysteresis loop, while for pulse 2 
and successive pulses, the CDW slides only if VJ, exceeds the threshold obtained from the 
slowly-ramped I - V  curve.

7.4 N um erical R esu lts

7.4.1 Previous Work

Several theories have been proposed to explain CDW conduction in switching samples. 
Hall et al. [51] have proposed that switching samples contain a few “ultrastrong pinning 
centers” [6 6 ] which prevent the intact CDW from sliding. The CDW can slide only when 
the internal strains become sufficiently large to cause tears, or phase slips, in the fabric 
of the condensate. Inui et al. [56] proposed a many-body Hamiltonian embodying these 
ideas, and they numerically investigated a 1-degree-of-freedom version. Strogatz et al. [67] 
have proposed a different, exactly-soluble many-body Hamiltonian tha t is isomorphic to the 
mean-field x-y model. Each of these models shows delayed switching [65], and there has 
not been much experimental work that could distinguish between them. O ther mechanisms
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Figure 7.11: Final current versus pulse height Vp for pulse 1 and pulse 2 for depolarizing 
experim ent (see Fig.7.10). Dashed line shows hysteretic I - V  curve for slowly swept voltage. 
The voltage shown assumes th a t the response of the sample is ohmic (c.f. Fig. 7.1). (a) 
Vdep =-4.18 mV. There is little difference between pulse 1 and pulse 2. (b) I'dep =-8.36 mV. 
Pulse 1 ends up in the sliding sta te  for Vp >14.2 mV, whereas the threshold is Vp >15.0 mV 
for pulse 2 .
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have also been proposed to explain delayed conduction specifically [53, 64, 123,124], In this 
section, we discuss a variant of the model described in Ref. [101], in which the distribution of 
impurities has been taken into account. We then present numerical simulations and compare 
our results with experiment.

7.4.2 Equations of Motion

We first discuss the origin of the equations of motion tha t we use for our simulations. We 
have found th a t it is crucial to employ a nonuniform (Poisson) distribution of impurity 
spacings, because it is this distribution which gives rise to polarization-dependent effects 
such as the pulse-sign memory effect [12]. Our method of discretization differs slightly (but 
significantly) from previous methods [11,12]. We sta rt as usual with the Fukuyama-Lee-Rice 
energy functional:

r  2

u =I dx f  W [  ~ 4>E{x)+£ p(x)v(x ~ xj) ' (7-i)
where <t>(x) is the CDW phase as position x, K  is the CDW elasticity, E (x)  is the (local)
electric field, p (x)V (x)  ss — cos(Qx +  <i>(x))6(x) is the impurity energy associated with 
impurity site Xj, and Q  is the CDW wavevector. We then make the ansai: th a t the system 
is overdamped, with a damping constant 7 0 . The overdamped equation of motion arises 
from the equation

W ( x )  =  - 4 £ ) '  (7‘2)

We then integrate Eq. 7.2 between impurity sites, making the following approximations:

r 3 i + 1

dx <t>[x) ss (sj+ i — S j) <p(xj) = djd>j ( 1 ,3)/
rs j+i
I dx sin[Qx +  4>(x)]6(x — Xj) =  sin[^(xj) -I- Qxj]

ss sin (7.4)

d 2<t>
L  d x 2 - d x

-*j +  l — Xj Xj — X j _ i

r‘i + 1
I dx E (x)  ss dj E ( x j )  = dj Ej ,

Js i

(7.5)

(7.6)
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where sj = (x3- i  +  *y )/2, and j3j =  - Q x j .  (If the average impurity spacing is much larger 
than the CDW wavelength, then the j3j can be considered to be random  numbers modulo 
2jr.) The discrete equations of motion then become [125]:

7 odj^j =  KA<j>j -  s i n -  0j)  +  d j E j ( t ) .  (7.7)

The CDW current density J c d w  coexists with a normal current density jjv, which together 
form an incompressible fluid:

v . .  =  d;w + ^  =  0i (78)

where Jcd w (* ) =  d>(x) and Jw(x)  =  E { x ) / i \ .  Here 7 ! is the resistance of the uncondensed
carriers which are excited across the CDW gap at finite tem perature. Condition 7.8 implies
th a t the total current obeys the condition

J(x) = l l  dxJ(X) ’ (?'9)
where L  =  2 j J = 1  dj is the length of the CDW. The discrete version of Eq.7.9 is the following:

7 i  L ^ [  7 i

=  {<f>k)k H 1 (7 -1 0 )
7 i

If one substitutes for djEj  using Eq. 7.10, then Eq. 7.7 becomes:

(7 0  +  7 i  ) d j  4>j =  I< A<t>j -  s i n ( 0 j  - / ? ,  ) +

rf,£(«) + 7i4(0Jfc)ifc- (7-11)

7.4.3 Numerical Experiments

We have studied the impulse response of Eq. 7.11 as a function of 7 1 / 7 0  and initial config
uration, in analogy with the experiments described in Section 7.3. We chose a system of 
size L =  N  =  64, with K  =  0.1. Periodic boundary conditions were employed. Time is 
measured in units of 7 0 , which is set to 7 0  =  1 in all the computations. We looked at a single 
distribution of impurities Xj, and we do not expect the general results to depend critically 
on the exact distribution. Our aim was to reproduce qualitatively the striking features of 
our experiments on delayed conduction. We have not attem pted to  make a  quantitative 
comparison of experiment and theory, although such a comparison is in principle possible. 
We have concentrated on features of our results which appear robust in the three samples 
which we have examined.
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Figure 7.12: Numerical simulations of Eq. 7.11 for two different initial configurations, (a) 
Plot of two initial configurations. For configuration 1, the CDW is in a relaxed state of 
minimum strain energy, obtained by letting the CDW relax from <fo=0 at t = —oo. For 
configuration 2, the CDW was allowed to relax to a metastable condition after a pulse 
(which did not switch) with Ep= 0.523. (b) Current versus time for three values of Ep for 
configuration 1. At £,,=0.523, the CDW remains pinned, but slides after a delay r=270 
for £ p=0.524, and r=250 for £ p=0.525. (c) Current versus time for three values of £ P for 
configuration 2. Note the change in time scale. At £,,=0.585, the CDW remains pinned, 
but slides after a delay r=700 for £ p=0.586, and r=475 for £ p =0.587.
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In the first set of numerical experiments, we applied a time-dependent field E(t)  of the 
form

E(t)  =  0, t < 0

E ( t ) =  Ep, t >  0, (7.12)

starting from two different initial configurations, as shown in Fig. 7.12(a). Configuration 1 
was obtained by setting all of the phases <j>j to zero and allowing the CDW to relax into a 
metastable state. Configuration 2 was obtained by allowing the final configuration of one 
of the first pulses with Ep =  0.523 to relax at zero field. Fig. 7.12(b) shows the CDW 
current as a  function of time for two different values of Ep and f i  =  10, starting from 
configuration 1. For Ep =  0.523, the CDW polarizes, but does not switch. The CDW 
switches for Ep =  0.524, and the delay changes from r  =  270 to r  = 240 when Ep is 
increased to Ep =  0.525. Fig. 7.12(c) shows the CDW current as a function of time for two 
different values of Ep and 7 1  =  10, starting from configuration 2. When the CDW starts in 
a highly polarized state, the polarization currents become much smaller, and the switching 
delays much longer. For Ep =  0.585, the CDW polarizes somewhat but does not switch. 
For Ep =  0.586, the CDW switches near t =  700, more than three times longer than near 
threshold in the unpolarized case (note the change of time scale). The dependence of r  on 
Ep is also more pronounced for configuration 2. The pulse for which Ep = 0.587 switches 
near t =  475, a much larger fractional change than for configuration 1.

The threshold for conduction Eph depends on the initial configuration. Fig. 7.13 shows 
a plot of the final CDW current versus Ep for configurations 1 and 2. The current for 
configuration 1 is offset slightly for clarity. The dashed line represents the hysteretic I - V  
curve obtained by slowly ramping the field E. Just as was seen experimentally in Fig. 7.9, 
Eph is much smaller for configuration 1 where the CDW is unpolarized, than for configuration 
2, where the CDW is initially polarized.

We have also examined switching behavior in Eq. 7.11 as a function of 7 1 , the normal 
carrier resistance. Fig. 7.14 shows a plot of the current versus time for three values of 7 1  

for the unpolarized initial condition shown in Fig. 7.12(a). Not shown in this figure is a 
small initial polarization current which is independent of 7 1 . The current quickly drops to 
almost zero after that, and remains small until t =  r , when the current switches on. At 
the switch, the current oscillations are quite large, and the current has been averaged over 
several oscillation periods for the sake of clarity ( c . f .  Fig. 7.17(b)). It takes a time t sw 

for the current to reach a maximum. As one can see from Fig. 7.14, both r  and tivl are 
proportional to 7 1 .

The dependence of the delay r  on e = (Ep — E*h)/Eph is shown in Fig. 7.15. Very close 
to e =  0, r  depends quite sensitively on e, becoming less so for e >  0.05. As one can see, 
t  drops roughly exponentially as e is increased, similar to that seen experimentally ( c . f .  

Fig. 7.4). The dependence is more closely exponential for 7 j =  50 than for 7 1  =  10.



124 CHAPTER 7. INPULSE RESPONSE OF SW ITCH ING  N B S E 3

0.7 i i i i i | i i i i | i i i i | i 
Yl=10 

0.5 -  □ Config. 1 

O Config. 2 ^  >

i l i

e  

6
0  0.3 -

0.1 -

|  I I I I I M I I I I I I I t l l l l M M I M I I I I I I I I I I l l l l l l H
(;:<((<(«((((((((«((((((((((((((((((((((((((((((((((«(•

- 0.1
0.3 0.4 0 .5 0.6 0.7

Figure 7.13: Final CDW current versus pulse height Ep for configurations 1 and 2 and 
7 i = 1 0 . The current for configuration 1 is shifted slightly for clarity. The transition to the 
sliding state occurs a t a smaller value of Ep for the unpolarized state.
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Figure 7.14: CDW current response to a pulse Ep =  0.6 for three different values of 7 1 , 
the normal carrier resistance. The current has been coarse-grained in time for clarity (c.f. 
Fig. 7.17). The three current traces appear shifted by a constant horizontal amount, in
dicating tha t both the delay time r  and the switching time taw are proportional to 7 1 .
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Figure 7.15: Plot of delay r  versus reduced pulse height t  for two values of The initial
configuration is a polarized state similar to that shown in Fig. 7.12. For e <  0.02, r  
depends quite sensitively on e. Above t  =  0.02, the decrease in r  is much less rapid, 
although still approximately exponential. For 7i=50, there is a disconuous jum p near e = 
0.5, corresponding to the condition |\P(< = 0)| =  Ep.

7.5 Analysis and Discussion

7.5.1 Origin of Delayed Conduction

In trying to understand why delayed conduction is observed at all in Eq. 7.11, it is useful 
to define a complex order parameter:

The order parameter is represented graphically in Fig. 7.16. The spatially-averaged pinning 
energy EPin and pinning force Fpln are given in terms of by

(7.13)

f;pin =  —rcos(0 )

Fpin =  — rsin (0 ),

(7.14)

(7.15)

whereas the CDW current is given by

7o(<j>k)k = E{t) + F p i n  =  E(t) -  rsin(0) (7.16)
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Figure 7.16: Phasor representation of the order param eter 'P =  -fa S i = i  =
7 7  exP(^» — &)■ The space-averaged CDW  velocity $  =  E (i)  — Im  'P, while the
pinning energy Spin =  —Re \P. In the E  =  0 pinned sta te , Im  ’P =  0 exactly, and for strong
pinning |iP| «  1.

and is well approxim ated by (j>k)k 8 when 7 1  ^ 7 0 , for reasons which will become clear 
below. We shall consider the case of strong pinning (A* <S! 1), which is bo th  conceptually 
simpler and the case we have considered in our simulations. In the E  =  0 pinned s ta te , t/pjn 
will be minimized, which means th a t r  as 1 , or <j>j — (3j 0  =  6 for all j .

If the  norm al carrier resistance 7 1  is much larger than the intrinsic CDW  dam ping 7 0 , 
then there is a  separation of tim e scales for the rigid translation of the CDW  and the motion 
of internal degrees of freedom. However, there is an im portant coupling between the two, 
and it is this coupling which leads to conduction delays. To see why this is so, we define
new variables $  and rfj, which correspond to  the rigid translation of the CDW  and to  the
m otion of internal degrees of freedom, respectively:

<*= <<Mfc (7-17)

r]j=  (7.18)

The equations of m otion for these new variables can be found from Eq. 7.11:

7 o<& =  — rsin (0 ) +  E(t)  (7.19)

(7 o +  7 i )dj rjj = K  A7)j -  sin(^  -  0j +  <P)

+tfyr sin(0) (7.20)

One can find the equation of motion for the m agnitude and phase of the order param eter
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r  =  j j j b ~ s M t y - # + * - 0 ) 7 /  (7.22)
i = i

By combining Eq. 7.19 and Eq. 7.21, one sees that when the pulse is turned on, the 
CDW behaves like a  single-degree-of-freedom damped driven pendulum:

7o0 =  Ep -  r(t)  sin(0) +  0 (7 0 / 7 1 ). (7.23)

The initial polarization of the CDW is brief, and after a time t ~  7 0  the CDW current 
drops almost to  zero. The internal degrees of freedom move on a time scale 7 1 . For now, let 
us consider the case in which the CDW is initially unpolarized. Then, one can ignore the 
elastic contributions, and the rjj obey the approximate equation:

(7o +  7i)»?j «  r  sin(0) -  sin(7 ,- -  fy  +  $ ) /d ;-

«  Ep -  sin(»)j -  0j + $ ) /d j  (7.24)

The rjj for which dj > 1 will be above “threshold” and will advance, while the r)j for which 
dj < 1 will remain “pinned” and will in fact move slightly in the opposite direction, due to 
the value of $ . The net result is that the magnitude r  will decrease due to dephasing of the 
order parameter. This dephasing occurs on a  time scale 7 1 . As r  decreases, the effective 
threshold in Eq. 7.23 decreases, and when r t a E ,  the CDW switches. Even when the CDW 
begins to slide, there is still a bottleneck because r  is still comparable to E.  The steady 
state is characterized by r  as 0, and takes a time <sw «  7 1  to approach that state. Hence 
both r  and <sw are proportional to 7 1 .

The motion of the order parameter $  is shown graphically in Fig. 7.17(a) for a numerical 
simulation in which 7i=50, and Ep =  0.6. The dashed line corresponds to Im'P =  Ep =  0.6. 
At point A, t =  0, and the current $  =  0.6 The order parameter ’P moves in a circular 
arc towards point B, which is reached at t = 6 . The dynamics are very slow as $  creeps 
along the dashed line, and at t = 933 the current has reached point C. The peak of the first 
current oscillation occurs at point D at t =  945. The corresponding CDW current is plotted 
versus time in Fig. 7.17(b). The current oscillations are quite large when the CDW switches 
because r  is still large. The fact that the current oscillations are large is an artifact of the 
equations of motion in one spatial dimension, and are not expected to be large in higher 
dimensions.

7.5.2 Dependence on Initial Configuration

It was seen both experimentally and numerically that the threshold for conduction de
pended sensitively on the initial configuration. Experimentally, the threshold voltage Vph 
was lower if the CDW configuration was prepared either by heating the CDW above the 
Peierls transition or by polarizing it in the opposite direction. Numerically, we observe a
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Figure 7.17: (a) “Configuration-space” plot of S ( t)  =  r(t) exp(id(t)) for 7 1 / 7 0  =  50, and 
£^>=0.6, beginning from a polarized configuration. The dashed line corresponds to Ini'S = 
Ep. The CDW current is given by 7 0 (<j>k)k = Ep — Im>P. The CDW begins a t point A at 
t =  0 in a sta te  of minimum pinning energy, with S ( t  =  0)=0.88. When the pulse is turned 
on, 9 increases with r  essentially constant until S  approaches the dashed line a t point B. At 
this point the velocity is nearly zero. Because of the distribution of impurity domain sizes 
dj, the ipj begin to  dephase, and r  decreases at a rate oc 7 1 . Near point C, r t z E p, and the 
CDW can begin to  slide quasi-rigidly, and S ( t )  spirals in toward r « 0 .  The peak of the 
first current oscillation occurs a t point D. (b) Plot of CDW current for same conditions as 
in (a). The current increases abruptly near t =  940. The current oscillations are large near 
the beginning of the switch because j®(t)l ** Ept and the CDW is behaving like a single 
degree of freedom oscillator near theshold.
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similar dependence on initial configuration. If the CDW begins in a polarized configuration, 
then the am ount of dephasing of will be much smaller because the “local fields” which 
cause the t)j to  move a t different velocities in Eq. 7.20 will be counterbalanced by elastic 
forces, and the threshold field will increase as a result.

Experimentally, the polarization currents were much larger when the initial configuration 
was prepared by heating the CDW above Tp  than by driving the CDW with a pulse of the 
opposite sign. The excess current seen in the heating experiments may be due to a weak 
tem perature dependence in the CDW wavevector Q. This hypothesis is consistent with a 
small shift in the CDW wavevector observed by x-ray diffraction, depending on whether the 
CDW was cooled in zero electric field or driven above threshold [126]. This effect cannot 
be modeled using closed boundary conditions, but presumably could if one employed open 
boundary conditions.

7.5.3 Pulse Height Dependence

The dependence of r  on pulse height agrees well between experiment and theory. In both 
cases one sees roughly two regions: for very small reduced field e there is a very sensitive 
dependence of r  on e, whereas for larger e the delay r  decreases approximately exponentially 
with i. We have not tried to find numerically the distribution of delays versus e because 
th a t would require knowing the distribution of initial configurations, .but we do expect a 
more sensitive dependence of t on initial configuration near the threshold. The threshold 
itself depends on the initial configuration, as was discussed in Sec. 7.5.2.

7.5.4 Temperature Dependence

The tem perature dependence of the average delay r  and the switching time fsw were both 
found to be activated with an activation energy E a comparable to the CDW gap. Numeri
cally, it was found th a t both r  and fsw were proportional to 7 1 , where 7 1  is interpreted as 
the resistance due to uncondensed carriers. In a semiconducting CDW, one would expect 
7 1  to be activated. In order for the numerical simulations to be consistent with experiment, 
one must assume that

7 1  o c  e x p ( E a/ k B T ) .  ( 7 . 2 5 )

In NbSe3  however, the Fermi surface is not completely gapped, and hence contributions to 
the ohmic conductivity come from both quasiparticles excited across the CDW gap and from 
ungapped electrons. Below T  =  48 K the resistance in NbSe3  decreases with tem perature, 
while the hysteresis in the l - V  curves increases. Although it appears difficult to  justify 
microscopically, the evidence is quite compelling tha t the ungapped electrons in NbSe3  do 
not play a significant role in screening CDW fluctuations [101, 122].
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The remarkable qualitative agreement between the experimental results and numerical 
simulations provides strong evidence tha t the mechanism for switching in NbSe3  is governed 
by the interaction between the CDW and uncondensed carriers. However, assumption 7.25 
is clearly a t odds with the fact th a t NbSe3  is metallic a t low tem peratures. The mounting 
body of evidence consistent with this assumption impels us to  search for a  microscopic 
description.
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Chapter 8 

Conclusions

It is difficult to write a conclusion for this thesis. Research is an ongoing process in which 
one aims for a complete understanding of a given phenomenon; one can only hope to achieve 
a more accurate approximation to the truth. When I began my thesis work there were many 
outstanding questions related to CDW phenomena.

Perhaps the least well-understood of all CDW phenomena was the hysteretic “switching” 
behavior observed in some, but not all, samples of NbSe3  and other CDW compounds. Some 
of the questions related to switching behavior are itemized below:

•  W hat is the physical origin of switching?

•  Why do some samples switch and others not?

•  Why do switching samples behave chaotically in response to rf driving, whereas non
switching samples do not?

•  W hat is the physical origin of delayed conduction?

•  Why are there fluctuations in the conduction delay times?

This thesis has addressed many of these questions, and has raised several new ones as well. 
There is compelling evidence that switching behavior has its origin in the interaction of the 
CDW with uncondensed carriers. If one assumes that the CDW and uncondensed electrons 
form an incompressible fluid, then it is easy to show that one obtains a global coupling 
term  which gives rise to switching behavior. This model was described in chapter 6 . The 
strongest argument in favor of this model comes from the comparison between experiment 
and theory in chapter 7, where nearly every aspect of the phenomena of delayed conduction 
is shown to be consistent with numerical experiments based on the model described in 
chapter 6 . There are, however, many unanswered questions related to switching phenomena.
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The low-dimensional chaotic behavior described in chapter 5 does not appear in the one
dimensional model presented in chapter 6 . Perhaps the generalization of the model to higher 
spatial dimensions will reveal such behavior. Another important unanswered question is 
related specifically to the switching behavior of NbSes: Why does NbSe3  behave as though 
it were a semiconducting material? In actuality, there are uncondensed carriers at low 
temperatures, and yet all of the evidence suggests that they play no part in the screening of 
CDW deformations which gives rise to  global coupling. In my opinion, this is perhaps the 
most fascinating unresolved issue related to switching phenomena.

The nature of mode-locking was not very well understood either. In particular, the 
question of whether many degrees of freedom were essential to the description of mode- 
locking was a hotly debated subject. There were many mysterious observations, such as 
large amplitude fluctuations of the narrow-band noise when the CDW was locked in the 
1 : 2 mode-locked state. The techniques of nonlinear dynamics have proved quite useful in 
understanding the behavior of mode-locking in CDWs. By measuring time-series, we were 
able to obtain information about the mode-locked state which could not be obtained by 
other types of measurements. Our results made it clear that many degrees of freedom were 
essential to describing the phenomena of mode-locking. We were also able to explain the 
amplitude fluctuations in terms of the motion of “dynamical solitons", topological features 
whose existence is predicted by the classical-deformable Fukuyama-Lee-Rice model.

The time-domain methods which were successfully applied to understanding mode- 
locking in the non-switching regime was also used to study chaos in “switching” samples 
of NbSe3 . With these techniques we were able to show that the chaotic behavior was 
low-dimensional, and is consistent with the dynamics of two coupled first-order nonlinear 
ordinary differential equations with periodic driving and noise. The shape of the chaotic 
attractor was reproduced in a second sample, indicating that the behavior is robust, and 
therefore provides strong quantitative constraints on any theory of switching CDW dynam
ics. At the present time, no model of CDWs has been successful in reproducing the chaotic 
behavior we observed, although I am hopeful that a detailed study of the model presented 
in chapter 6 , generalized to higher spatial dimensions, will exhibit such behavior.

Charge-density waves provide unique, highly accessible experimental system in which to 
study the behavior of extended nonlinear dynamical systems driven far from equilibrium. 
Conversely, the tools of nonlinear dynamics and time-series analysis have proven useful in 
understanding the physics of charge-density waves. I hope that it has become clear to the 
reader after reading this thesis that the fields of nonlinear dynamics and charge-density 
waves have a  lot yet to learn to one another.
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