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ABSTRACT 

 

High Q Terahertz Photonic Crystal Microcavities 

 

by 

 

Cristo Manuel Yee Rendon 

 

We present a study of terahertz photonic crystal structures consisting of photonic 

crystal slabs, photonic crystal waveguides and photonic crystal cavities. The 

structures were fabricated from high resistivity silicon wafers using deep reactive ion 

etching. The photonic crystals were based on a triangular array of hole for which for 

hole size r=0.30a has a photonic gap for transversal electric polarization and for hole 

size r=0.45a it has a optical gap for transversal magnetic polarization, where a is the 

lattice constant. 

We fabricated samples to operate at 1 THz for transversal electric and transversal 

magnetic polarizations which were intended to be coupled to quantum transitions in 

nanostructures or hydrogen like transitions of impurities in semiconductors which lie 

near 1 THz. The optical gaps for the photonic structures were measured using far 

infrared spectroscopy and time domain spectroscopy. Cavities were constructed and 

inserted into a waveguide forming a narrow band Lorentzian filter. For transversal 

electric (transversal magnetic) polarization we used an L3 (L2) which consist in 



 

 xiii 

three (two) holes missing along the ΓJ orientation. The transmittance measurements 

using a narrow band source present sharp resonances associated with the resonant 

modes of the cavity. A quality factor as high a 1020 for transversal electric and 1560 

for transversal magnetic were found. 

We also studied the 240 GHz range. Here the cavity is intended to be 

incorporated into a 240 GHz electron spin resonance setup. Here we used the L3 

cavity for transversal electric polarization. The photonic crystal cavity was coupled 

to a waveguide using the Lorentzian coupling and channel drop scheme. 

Transmittance measurements and scattering into free space by the cavity employing 

a narrow band source reveals a Q factor as high as 3800. 

Frequency domain and finite time domain measurements using the experimental 

parameter of the structures accurately predict the values found in the experiment.  
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1 Motivation and overview 

The terahertz domain is located at the heart of the electromagnetic spectrum. It is 

commonly accepted to cover the range from 0.3 to 30 THz. This region marks a 

transition zone where electronic and photonic technologies converge, a place that up 

to now has been considerably challenging due to the non trivial way to produce and 

detect radiation but also a place where significant improvements could be made. 

Science at terahertz frequencies is a very active region of research as many 

physical phenomena are in its scope. The black body radiation of an object with 

temperature above 10K emits in the terahertz region. Collective modes in polar 

liquids, like water, absorb at terahertz frequencies.  Biological systems are also in 

this range as collective motions in proteins occur at terahertz frequencies Quantum 

transitions in nanostructure like intersubband transitions in quantum wells and 

quantum dots lie in the terahertz regime [1,2,3,4,5] 

A. Motivations 

Among the interesting research topics studied at terahertz frequencies is the 

proposal for a quantum information scheme based in a terahertz quantum system. In 

particular the proposal that motivated the present work is the one formed by the 1s-

2p transition of shallow donors in GaAs as a qubit and a terahertz photonic crystal 

cavity as the resonator. 

Photonic crystal cavities have the properties that they could reach extremely high 

Q values and very small modal volume, properties required in order to reach the 
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strong coupling regime needed for the implementation of quantum information 

schemes. A high Q cavity is also useful not only for quantum information but also 

for applications where strong localized fields are needed, as in the case of compact 

sensors and filters and low-threshold lasers [6,7]. 

The quantum transition 1s-2p for an ensemble of shallow donors in GaAs has a 

typical energy of 4mev and a inhomogeneous line width of 𝛾𝑄 = 15 GHz and for a 

moderate Q=1000 we have that the linewidth 𝛾𝐶 = 1 𝐺𝐻𝑧. The coupling strength of 

an ensemble of donors to a cavity mode is given by Ω =  𝑁𝑔0, where N is the 

number of donors coupled in the cavity and 𝑔0 is the coupling strength for a single 

donor. For a moderated doping of 𝑛 = 4 × 1020  𝑚−3 the cavity strength coupling is 

given by Ω = 175 𝜇𝑒𝑉 ≈ 42 𝐺𝐻𝑧 . With these values the condition for strong 

coupling  Ω ≥  𝛾𝑄 − 𝛾𝐶 4  is satisfied. 

High Q cavity could lead to produce extremely low threshold lasers by using the 

intersub-level transition in quantum dots. Recently quantum posts [8], have been 

proven to have intersub-level transitions at terahertz frequencies. Quantum posts 

have the advantage their energy transitions could be tuned by changing the size of 

the post. The integration of a quantum post into a terahertz photonic crystal opens 

the opportunity to produce an extremely low threshold lasers. In particular we 

explore the possibility of constructing a photonic crystal cavity that will couple to 

quantum posts. A quantum post transition has a strong dipole along the growth axis 

and therefore requires a cavity with electric field polarized in the same direction.  

According to the conventions of photonic crystals, such a cavity has a transverse 
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magnetic (TM) polarization. Most of the work has been done for transverse electric 

(TE) polarized cavities and therefore a high Q TM cavity is worth exploring. 

A high Q cavity with small mode volume will be beneficial to a high frequency 

electron spin resonance (ESR).   High fields enhance the sensitivity of this technique, 

and in particular we look to integrate a photonic crystal cavity to the UCSB 240 GHz 

ESR spectrometer. Electron spins in Si are of particular interest. The lifetime of 

donor electron spins in phosphorus-doped silicon is extremely large [9,10], and it’s 

been proposed as a qubit.bFor this particular quantum system, the line width of the 

transition is 𝛾𝐶 ≈ 7𝑀𝐻𝑧 and for a doping density 𝑛 = 1 × 1021𝑚−3 an ensemble of 

spins has a coupling strength Ω ≈ 8.85 𝑀𝐻𝑧. For reaching the regime of strong 

coupling it will be required to have a cavity with a line width of 25 MHz or less 

which at 240 GHz correspond to a cavity with a quality factor Q=9600, a Q value 

that is within the reach of a photonic crystal cavity.  

The construction of photonic crystal cavities that couple to the three THz 

schemes that we mentioned before, shallow impurities in GaAs, terahertz quantum 

nanostructures, in particular quantum posts, and electron spin resonances are the 

motivation behind our work.  

Photonic crystals at terahertz frequencies has been constructed mainly intended 

to be used for terahertz quantum cascade lasers; here the mode is lateral confined by 

a two dimensional photonic crystal while the vertical confinement is produced by 

double wall metal waveguide; using this simple structure very small threshold laser 

have been constructed. However a real photonic cavity in which the modes are 
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strongly confined will push even further the laser threshold, this dielectric cavity has 

not been constructed yet. The main obstacle is not the construction of the cavity 

itself, as there a lot of examples of photonic crystal structures and applications based 

on THz photonic crystals [11,12,13,14,15,16,17,18], but in its characterization. One 

way to characterize a photonic crystal cavity is by having a source inside the cavity 

[19], however there is not a THz emitter that could be used for this purpose. Another 

way to measure a photonic crystal cavity is by coupling the cavity to a waveguide 

[20], however at THz frequencies there a very few tunable sources that could 

employed for this purpose; as for measuring high-Q cavities a very narrow lines are 

required.  

Recently there is been an effort to construct a terahertz photonic crystal cavity 

for sensing purposes, these type of photonic crystal are based on  metallic 

waveguides and  have prove to produce cavities with  a Q≈100 [21]. In these metallic 

cavities the fields are confined in air; which have a severe effect of the maximum 

quality factor that can be reached with this scheme. A Q≈100 factor is also very 

close to the resolution limit for terahertz time domain spectroscopy which typically 

is used to characterize THz photonic crystals.  

B. Objectives 

The objective of the present thesis work is the study of dielectric photonic crystal 

cavities at terahertz frequencies. This work covers the construction of a terahertz 

photonic crystal to the construction of a high Q photonic crystal cavity. The 

characterization of the photonic crystal cavities was done by coupling the cavity to a 
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waveguide; we explore two different waveguide coupling schemes which together 

with a high resolution tunable source enable us to measure cavities with a Q factor as 

high as 3800 limited by carrier absorption at room temperature. Is worth to mention 

that these high-Q THz photonic crystal cavities have the highest Q factor reported 

and in fact the very first constructed and measured at THz frequencies.    

C. Thesis structure   

 The thesis is dived in eight chapter and seven appendixes. The first chapter 

corresponds to a brief background and an overview of the material covered by the 

thesis. In chapter two we introduce the basic concept of a photonic crystal, including 

photonic crystal waveguides and photonic crystal cavities. Only the main ideas are 

presented here with detailed explanation presented in appendices A and B.  Chapter 

three explains the design and construction of the photonic crystal samples with the 

detailed recipes for each set of samples presented in appendix D. The central part of 

the present work corresponds to chapter 4 to chapter 7 in which each one 

corresponds to a different project which involves design, construction, experimental 

measurement and theoretical modeling for a specific photonic crystal structure. 

Finally in chapter eight we present the conclusion of the present work and we outline 

further development in the area. We expect the present work to be a useful starting 

point for future development that will help to bridge the terahertz technological gap. 
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2 Theoretical Foundations 

A. Photonic crystals 

The blue resplendent reflection of opal or intricate iridescence colors in butterfly 

wings scales are some of the most prominent examples of naturally occurring 

photonic crystals.  

The optical properties of photonic crystals are products of the application of 

Maxwell’s equations to a symmetric macroscopic media. Light propagating through 

a periodic medium
1
 undergoes scattering if the wavelength is comparable to the 

periodicity of the medium. This phenomenon is similar to electrons that undergo 

scattering by the periodical potential of the atomic cores constituting a crystal, and 

similarly the solution for the equation governing the behavior of a stream of photons 

are planes waves modulated by a periodic function in the lattice, i.e. Bloch functions. 

The representation of the wave function of electrons as Bloch functions is one of the 

foundations of semiconductor theory in solid state physics. The analogy is 

emphasized by borrowing terms like optical band gap or point defects.  

Perhaps the simplest and most know example of a photonic crystal is the quarter 

wavelength dielectric mirror or Bragg reflector, as shown in Figure 2.1. A Bragg 

reflector consists in a one dimensional stack of two dielectrics with different indices 

of refraction. The dielectric mirror is normally designed to operate at a given 

                                                 
1
 Here we are considering a periodic medium as one in which the index of 

refraction is not constant. 
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frequency and near normal incidence. As the name suggests a quarter wavelength 

dielectric mirror consists of a series of dielectric layers with the thickness for each 

layer chosen to be a quarter of the wavelength of light in the medium. The 

interference of reflections from each interface causes for a normal or near normal 

incident beam to be strongly reflected; normally very few periods are need to obtain 

a reflection coefficient that exceeded that obtained by metal coated surfaces. These 

mirrors are widely used of the fabrication of laser cavities [22].  

The high reflection of the dielectric mirror produces a very low transmittance for 

a frequency range around a target frequency.  This low transmittance region is called 

photonic crystal gap, and an equivalent definition of a photonic gap is a frequency 

range for which there are no propagating modes in the structure;  the photonic gap is 

the key property of a photonic crystal on which all the applications are based. 

 

Figure 2.1 A quarter wavelength dielectric mirror is an example of a one 

dimensional photonic crystal. For a specific wavelength a very high reflection or 

very low transmittance is obtained by the constructive interference of the reflection 

at each interface. 
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The principle behind the optical gap for the one dimensional dielectric stack is  

index of refraction periodicity as was explained by Lord Raleigh in 1887  [23]. 

Using this principle to extend this idea to higher dimensional systems is 

straightforward, like the examples shown in Figure 2.2, which are just examples of 

structures with a two or three dimensional periodicity.  

 

 

Figure 2.2 (a) shows a two dimensional array of dielectric rods in which the 

distance between rods is negligible compared with size of the rods. The system is 

periodic in two dimensions and homogeneous in the third. An optical gap could be 

created for a beam propagating in the plane perpendicular to rod axis. (b) Shows a 

three dimensional photonic crystal in which there is a three dimensional periodicity, 

an optical gap could be found for beam propagation along any direction in the 

crystal. 

 

The three dimensional photonic crystal is particularly difficult to incorporate 

into standard silicon and GaAs technology. In practice there is a hybrid approach 
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which is more convenient. A photonic crystal slab is a structure with a two 

dimensional periodicity and with a finite thickness in the third direction. The 

confinement mechanism is given by a total internal reflection of the propagating 

vector by a 2 dimensional photonic crystal in the plane of the slab. As shown in 

Figure 2.3. 

 

Figure 2.3 Confined modes in a photonic crystal slab. (a) The vertical 

confinement of a mode in a slab if produced by total internal reflection. (b)  An 

inplane confinement is produce by a two dimensional photonic crystal. 

 

The modes in a photonic crystal slab can be classified according to the z=0 

mirror symmetry plane of the E field as Transversal Electric (TE) if the E field has 

an even symmetric or Transversal Magnetic (TM) if the field as an odd symmetry, as 

is illustrated in figure 2.4. Strictly speaking only in the middle plane the modes are 

pure TE or TM which is exact for a two dimensional photonic crystal. The 

distinction between TE and TM is important since the photonic crystal gap is 

polarization dependent. 
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Most part of our work was done using a photonic crystal slab with a 

triangular lattice, so we will emphasize the concepts using this lattice. The details of 

the mathematical treatment of photonic crystals are reports in appendices A and B. 

Here we will be only repeating the material which is strictly necessary.  

 

Figure 2.4 The polarization of the mode deepens on the mirror plane symmetry 

obeyed by the E field. (a) TE-like for even mirror symmetry. (b) TM-like for odd 

symmetry.  

As in solid state physics the concept of band diagrams is useful for the 

understanding of the properties of a crystal. A band diagram or dispersion relation is 

a plot of frequency as a function of the wave vector, usually along a high symmetric 

direction in the reciprocal space. Using the property that a Bloch function for an 

arbitrary vector in the reciprocal space could be mapped into the first Brillouin zone, 

the band diagram is only plotted in the reduced scheme zone, and is along a high 

symmetry orientation in the Brillouin zone due to this being where the Brag 

conditions could be satisfied; therefore, these are the only places where  𝜔 = 𝜔(𝑘)  

could be discontinuous. 

The band diagram for the photonic crystal slab is the projection of the band 

diagram into a two dimensional triangular reciprocal lattice, i.e. is a plot of 

frequency as a function of the in plane k vector.  For a silicon photonic crystal slab 
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with hole radius r=0.30 and thickness t=0.6 the band diagram for TE polarization is 

shown in Figure 2.3. This plot has been calculated using the program MPB. The 

detail of the code is found in the appendix F.  MPB is a frequency domain solver 

code that computes the harmonic modes for Maxwell's equations reformulated as an 

eigenvalue problem (see appendix A).   

 

Figure 2.5 (a) The band diagram for a photonic crystal slab with thickness t=0.6 a 

and hole radius r=0.3a, where a is the lattice constant. An photonic crystal gap for 

guided modes is found from 0.256 to 0.320 (c/a). (b)  The photonic crystal triangular 

lattice. This 2-d lattice is responsible for the confinement of the guided modes in the 

plane of the slab. (c) The reciprocal space for the triangular lattice, in yellow is the 

First Brillouin zone, the irreducible zone is in green and the high symmetric points in 

the Brillouin zone are highlighted.   

 

The solid line here is the “light line”, the dispersion relation of light in vacuum 

projected onto the Brillouin zone. Any mode above this line will not be guided 

through the slab because its k vector does not satisfy the condition of total internal 

reflection. The region between 0.256 (c/a) to 0.320 (c/a) where there are no modes is 
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called photonic crystal gap. For this range of frequencies light will not propagate 

through the slab.  

In some cases the transmission through the structure is more important that 

the band structure itself. Take for example the quarter wavelength dielectric mirror 

where the transmission and reflection characteristics of the structure are essential. In 

those cases there are alternatives like the Transfer Matrix Method (TMM) and the 

Finite Difference Time Domain (FDTD) method.  In our work we will be using the 

latter. Time domain methods start from initial field configurations, and then the 

fields are updated using the central difference approximations to the space and time 

partial derivatives. An excitation or driven term is included, normally as a field 

component that we are interested in, which could be a pulse or a continuous source. 

The field updating process continues until a steady state is reached for a continuous 

source or else the time scale is large enough so all the desired interactions have 

already finish as in a pulse excitation.  For calculating the transmittance we use short 

pulses, i.e. pulses with a non-zero frequency width. The source is located opposite to 

the point where the transmittance is to be calculated. The flux is then monitored at 

the measuring point as a function of time and by Fourier transform the frequency 

response is obtained    
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Figure 2.6 The transmittance spectra for a photonic crystal slab with a triangular 

lattice calculated using finite difference time domain calculation. . As expected, the 

region of low transmittance (optical band gap) corresponds to the photonic crystal 

bandgap that is found using frequency domain methods (Fig. 2.4). 

 

To calculate the transmission through the sample we use the free available 

software called MEEP. Using MEEP the transmittance along the ΓJ orientation in 

the crystal is computed, the detailed code used by MEEP is shown in appendix F. 

The computed transmittance for a photonic crystal slab with radius r=0.30a and with 

thickness t=0.6a is shown in Figure 2.6. Here we used a symmetric pulse along the 

ΓJ. The most prominent feature of the transmittance is the zone with very small 

transmittance center a 0.30 (c/a) which corresponds to the gap between band 1 and 

bands 2. The second smaller gap correspond to gap between bands 3 and 5. It can be 
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proved that band 4 does to couple to a symmetric beam and therefore is not shown in 

the transmittance. 

B. Photonic crystal cavities 

The optical gap for a photonic crystal could be used for far more that just making 

an excellent mirror. The optical gap could also lead to the construction of the 

ultimate cavity by creating a space inside this high quality mirror; this is the idea 

behind a photonic crystal cavity. Light trapped inside the cavity will be confined 

between the mirrors; the better the mirrors the better the cavity. The simplest way to 

produce a cavity in a photonic crystal is by creating a defect. 

A photonic crystal defect is analogous to an impurity in a semiconductor in solid 

state physics. It is a state created with a defined frequency in the otherwise forbidden 

gap of the structure; the state is localized around the defect. The introduction of a 

defect creates a local zone in which the discrete translation symmetry is broken and 

eigenstates of k constant are not permitted, and therefore it cannot couple to the bulk 

modes of the photonic crystal, where the modes are defined by a reciprocal vector 

and a defined frequency.  

In our particular case we considered the photonic crystal slab with a triangular 

lattice in which three holes are removed along the ΓJ orientation in the lattice. This is 

a well know cavity known as the L3 defect in the literature. It has been reported that 

for visible and optical telecommunications frequencies Q values as high as 500000 

[24,25]are possible by carefully tuning the parameters of a L3 cavity.  
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Figure 2.7 (a) shows the geometry of the cavity with its three holes missing. 

Figure 2.7 (b) and (c) shows the Hz and Ey field components of the resonant mode 

of the cavity. As expected the mode is well confined around the defect. FDTD 

simulation of the L3 defect shows that it has a Q=4600 and its resonant frequency is 

f=0.27 (c/a).  

 

Figure 2.7 The photonic crystal L3 cavity. (a) The structure of the L3 cavity 

consists in three holes missing along the ΓJ orientation. (a) Hz mode profile of the 

resonant mode of the L3 cavity. (b) Ey mode profile of the resonant mode of the L3 

cavity. 

 

C. Photonic crystal waveguide 

A photonic crystal waveguide is another fundamental structure used by the 

photonic crystal community.  The transport of radiation from one part of the device 

to another would be impossible without waveguides.  

A photonic waveguide is a type of defect similar to the photonic crystal cavity 

but with a great difference; a waveguide supports states with a well-defined value of 

k and frequency.  These Bloch states propagate in the structure and are localized 
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around the waveguide. One easy way to produce such kinds of systems is by 

introduction of line defect as shown in Figure 2.8(a). 

 

Figure 2.8 (a) Photonic crystal waveguide. (b) Photonic crystal waveguide 

dispersion. 

  

By removing a line of holes the effective index is increased and therefore modes 

from the second band in the band diagram shown in Figure 2.8(a), are pushed into 

the optical gap forming a defined band. As shown in Figure 2.8(b).   

 Waveguides will play a very important role for characterizing our photonic 

crystal cavities; all our samples will rely on coupling a cavity with a waveguide to 

measure and determine the quality factor of the cavity. 
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3 Photonic crystal Design and Fabrication 

In this chapter we describe the process of design and fabrication of the photonic 

crystal samples. The overall process will be described in some detail with the 

complete recipes reported in the appendix D. 

 The first part of the design process is to compute the frequency response of 

the structure using FDTD. There are three parameter that could change the optical 

properties of a given photonic crystal:  lattice constant, hole radius, and slab 

thickness, provided that the index of refraction stays constant. 

 In the process of choosing the right parameter for the samples we decided to 

set the thickness and the hole radius to specific values and work only with the lattice 

constant. Employing FDTD the structure is simulated to verify that the frequency 

response that we are interested in, usually a cavity frequency resonance, falls into the 

range of our source of THz radiation. In order to access the entire dimensionless 

frequency range of interest, we tune the frequency of our source over its entire range, 

and also create structures which are geometrically identical but scaled in size.   

 With the parameters of the structure known, we used a cad program, LEDIT, 

to design a mask.. When we designed the mask we tried to maximize the space to 

include several designs to be able to fabricate them in a single batch. An example of 

the photomask is shown in Figure 3.1 
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Figure 3.1 Typical photomask employed in the sample fabrication. Here a set of 

photonic crystal structure with different variation parameters. The space is 

maximized in order to have the largest number of samples in the smallest area of the 

mask aiming to have uniform fabrication conditions for a particular set of samples. 

 

We fabricate a set of samples in a single batch looking to simplify the 

process and also looking to have the same parameter for all the structures. We did 

not preprocess the wafer to a specific thickness thus the thickness of the wafer could 

vary from wafer to wafer. By fabricating an entire set of samples from a single 

wafer, we can ensure that all the samples will have the same thickness and the results 

could be compared more directly than if we had samples made from a different 

wafer. 
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 In the case of photonic crystal cavities the absorption coefficient can change 

from wafer to wafer making it harder to compare the quality factor from two 

different sets.   

In our first designs, we made our own photomask using a Heidelberg DWL 

200. Later it turned out to be most cost effective to purchase the photo mask from a 

vendor. We use the company Photosicence,inc. Once the photomask is fabricated we 

continue the fabrication process in the cleanroom.  

All our samples were fabricated at Nanotech UCSB.  In Figure 3.2 we 

present the basic flow chart of the clean room fabrication processing. The process 

starts by coating a 4-inch silicon wafer with 2.00 to 6.00 μm Si02. This wafer is used 

as a carrier wafer. We need to coat the carrier wafer due to the fact that the etching 

rate of Reactive Ion Etching (RIE) strongly depends on the area of Silicon exposed 

to the reactive ions. The ratio of the etching rate of Si:Si02 is 200:1 and since our 

wafers are at most 400 μm thick a few microns of Si02 is all that is needed.  

The samples are made from high resistivity silicon from 2-3 KOhm-cm up to 

10-20 KOhm-cm. The wafer preparation starts with a standard solvent cleaning 

procedure. After the cleaning we process the sample using ultraviolet lithography. 

The next step is to mount the sample on the carrier wafer
2
 using either a thin layer of 

photoresist A4110 or Santovac; the etching step was done using the Si Deep-

Reactive Ion Etching using a Bosch Plasma-Therm 770 SLR. 

                                                 
2
 In the case of  the samples with thickness 50 μm it was first glued to an extra 

carrier wafer coated with Si02 to facilitate manipulation during the lithography 

process. 
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Figure 3.2 Fabrication flow chart. 

  

After completing the etching cycles the samples are inspected under an 

optical microscope. If the etch is incomplete, the sample is returned to the etching 

chamber to continue an extra etching cycles. The initial time that the sample stays in 

chamber is determined by the etching rate of the RIE. The nominal etching rate is 2 

µm per minute, which implies a time of about 25 minutes to half hour for a 50 μm 

thick sample and 2 hours and 10 minutes for a thicker 380 μm sample. Usually more 

time than the nominal rate implies was required. Finally after the etch step is finished 

the samples are soaked in acetone to be removed from the carrier wafer. If 

photoresist was employed to glue the samples to the carrier wafer an overnight bath 

in acetone is required. 
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4 Terahertz Photonic crystal slab  

In the present chapter we’re covering the basic structure of a photonic crystal; in 

particular the triangular holes photonic crystal slab (PCS) which have a transverse 

electric (TE) photonic crystal gap. We characterized the photonic structure by 

transmission measurement, and used finite difference time domain [26] and 

frequency domain code [27]to model the PCS optical properties.  

Terahertz photonic crystals slabs have been studied using Fourier Transform 

Infrared (FTIR) measurements [28] and time domain techniques [29]. In the 

previously reported works the thickness of the slab was several times the lattice 

constant, and therefore supported multiple slab waveguide modes. In contrast our 

fabricated samples were slightly more than half wavelength in the material of the 

center frequency gap and therefore our slabs are single mode.   

The multimode slabs also have the inconvenience that the extra modes are 

pushed into the optical gap decreasing its size and in some case completely covering 

the gap.  Such thick PCSs are not suitable for fabricating PC waveguides and high-Q 

resonators due to the possibility of having effects such as mode conversion and 

dispersive guiding. The photonic crystal optical gap is the basis for more 

complicated photonic structures that will be explored in the following chapters. 

The first objective was to construct a photonic crystal with its frequency response in 

the 1 THz frequency range. The selected design was a photonic crystal slab with a 
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triangular lattice of holes. We selected the triangular lattice due to it having a 

substantial optical gap for TE polarization
3
. 

A. . Experimental setup  

We used the Fourier Transform Infrared (FTIR) spectroscopy to characterize the 

frequency response of the photonic crystal. FTIR spectroscopy is a broad band 

measurement technique that covers the range from the ultraviolet to well into the 

terahertz regime. It consists of a broad band thermal emission source that passes 

through a Michelson interferometer with a fixed mirror and a movable mirror. The 

beam is focused into a sample by an off-axis parabolic mirror, transmitted through 

the sample and then collected by another set of off-axis parabolic mirrors to be 

finally measured by a detector. The detector measures the output of the 

interferometer as a function of the path difference between two mirrors. This path 

difference is equivalent to time difference and so the interferogram measure is the 

autocorrelation of the source. By taking its Fourier transform the frequency spectrum 

of the source is obtained. In general it’s more complicated as the effect of the beam 

splitter and the detector itself needs to be considered. 

The transmittance is taken from dividing the spectrum of the sample with respect 

to the spectrum of the reference.  

                                                 
3
 The results from this section appeared published in Applied Physics Letters 

“Transmission of single mode ultrathin terahertz photonic crystal slabs”, Cristo 

  M. Yee, Nathan Jukam and Mark Sherwin, Appl. Phys. Lett. 91, 194104 (2007). 
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In our case we use a Bruker I66-V with a mercury lamp and employed a 4 K 

Silicon composite bolometer. The schematic of our setup is shown in figure 4.1. 

 

Figure 4.1 Experimental FTIR setup 

 

We employed a 50 μm Mylar beam splitter. We employed a 2-dimensional 

parabolic mirror to further focus the beam into the sample. On the edge of the 

sample we use a metal slit to block the light which is not guided through the sample. 

Then a polarizer is used to select the appropriate linear polarization. At the end a 

Liquid helium Silicon composite detector is used to record the signal. 

The frequency spectrum of FTIR with no sample is shown in Figure 4.2 

using the 50 μm thick beam splitter. The first minimum in this beam splitters 

reflectance is at 2 THz, and the first maximum is at 1.4 THz.  Using FDTD 

simulations, we designed a photonic crystal slab with its optical band gap centered 

near 1.4 THz to achieve the best possible signal to noise ratio in our measurements. 
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Figure 4.2 Frequency spectrum of the FTIR using a mercury lamp, a 50 μm 

Mylar beam splitter and a silicon composite bolometer 

 

The sample design is a simple photonic crystal slab 50 µm thick with a triangular 

lattice with lattice constant a=64 µm.  The sample contained 5 lines of holes along 

the ΓJ orientation of the crystal as seen in figure 4.5, each hole with radius r=0.3 a. 

We selected only 5 holes as the length of the photonic crystal because even with this 

short length it still has a clear optical gap.  

B. Sample fabrication 

The photonic crystal slab structure was fabricated following the procedure 

explained in chapter 3.  A scanning electron microscopy photograph is shown Figure 

4.3. The samples show good quality interfaces and smooth sidewalls characteristics 

of the Deep Silicon RIE. 
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Figure 4.3 Scanning electron microscopy photograph of a photonic crystal slab 

with a triangular lattice 

 

The sizes of the holes were estimated from optical microscopy photographs and 

were found to be  𝑟 𝑎 = 0.3075 ± 0.003, where 𝑎 is the lattice constant. This value 

is slightly larger than the nominal 0.3; we estimate that these values were either the 

product of the lithography process or from an overetch during the fabrication 

process. 

The sample was too thin to measure by mechanical means, so we measured its 

thickness using the FTIR as described in Appendix E. The experimental of slab 

thickness was  𝑡 = 48.56 ± 0.03  𝜇𝑚.  
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C. Experimental results and discussion 

The optical gap for the triangular PCS have TE polarizations which are the 

modes with the Electric field in the plane of the slab. In our experiment we measure, 

using transmission, the optical gap along the ΓJ orientation. The configuration which 

shows the transmission direction and the beam polarization is shown explicitly in 

Figure 4.4. 

 

 

Figure 4.4 The transmission is along the ΓJ orientation in the triangular lattice 

and the polarization is with the E field in the plane of the slab. 

 

The FTIR transmittance experiment for the photonic crystals was realized using a 

resolution of 15 GHz; as a reference transmission spectrum we used the 

transmittance through a piece of unprocessed silicon wafer with equal thickness. As 

shown in Figure 4.5 it is clear that there is a region of low transmittance from 1.16 to 

1.65 which is centered around 1.4 THz as expected from the design of the sample. 

This low transmittance is associated with the photonic crystal optical gap. 
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Figure 4.5 FTIR transmittance through the photonic crystal compared with the 

transmittance from a reference wafer. A low transmittance region from 1.16 to 1.65 

THz is measured. In the spectra the transmittance through the photonic crystal is 

multiplied by an arbitrary constant. 

 

Figure 4.6 (a) Frequency domain calculations of the band diagram for TE modes 

of the PCS; here the PCS is considered to be infinite on the plane of the slab. (b) 

Finite difference time domain calculation of the transmittance for TE modes of the 

PCS  



 

 28 

 

Figure 4.7 Experimental spectrum compared with FDTD simulations. The 

maximum in the transmittance in normalized to 1. The spectra with radius r=0.31 is 

the best fit for the experimental setup and in consisted with the hole size measured 

experimentally. 

 

We realized frequency domain (FD) simulation of the structure photonic crystal 

slab. Figure 4.6 (a) shows the band diagram considering that the structure is infinite 

in the plane of the slab. The band diagram shows an optical bandgap with frequency 

region that matches the region of low transmission found experimentally. However 

FD simulation cannot be directly compared to the transmittance because it only 

shows the allowed mode but it does not take into account the coupling for each 

mode.  A more direct comparison between and experiment is given by a full 3-D 

FDTD simulation as shown in Figure 4.6 (b). The FDTD simulation used the 

parameters of the structure including its thickness, hole radius, lattice constant and 
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finite size along the direction of propagation (5 rows of holes). The FDTD spectrum 

shows a low transmittance that matches the optical gap of the FD simulations and 

also agrees with the experiment.  

The FDTD transmittance prediction matches very well the transmittance found in 

the experiment. As a verification of how well theory matches with the experiment 

we calculated the transmittance for different values of the hole size.  Figure 4.7 

shows a detailed comparison of the experimental transmittance and the FDTD 

calculation for the ΓJ orientation for different radii, as we expected the best match is 

given by the experimentally measured parameters of the slab.  

  The FDTD calculations for different radii agree with one another and the 

experiment at the lower frequency part of the bandgap (dielectric band). The higher 

frequency part (air band), however, is extremely sensitive to changes in the 

parameters of the PCS. For the measured parameters of the structure (r=0.31)  the 

FDTD shows a region of low transmittance whose width matches the experiment. 

The experimental transmission floor is limited by leakage around the PCS and thus 

higher than the calculated value. 

D. Conclusion: optical gap for a THz TE photonic crystal slab 

From Figure 4.5 and Figure 4.7 we conclude that for silicon photonic crystal slab 

with triangular lattice of holes with lattice constant 𝑎 = 64 𝜇𝑚, radius 𝑟 =

0.3075 𝑎 = 19.68 𝜇𝑚 and thickness 𝑡 = 0.759 𝑎 = 48.56  the transmission 

spectrum has an optical gap for TE polarized guided modes propagating along the ΓJ 
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orientation in crystal. The transmittance is well modeled by FDTD using the 

experimentally-measured dimensions of the sample.  

Single mode PCSs are the foundation for waveguides and resonators, structures 

that will be explored in the following chapters. The present work however shows 

that it is possible to have these structures work at terahertz frequencies and thus 

enabling another tool that helps to close the terahertz technology gap. 
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5 Transversal Electric Photonic Crystal Cavity 

After successfully fabricating and measuring a photonic crystal slab at 

terahertz frequencies our next goal was to construct a photonic crystal cavity that 

operated in the vicinity of 1 THz
4
. The main motivation for constructing a photonic 

crystal cavity with a resonance near 1 THz was to incorporate the cavity into a 

quantum information processing scheme [30]. However, small cavities with high 

quality factors Q are also fundamental to the implementation of devices such as 

compact sensors and filters [20,6], low-threshold lasers [3] and studies of strong 

coupling between light and matter [31]. 

Photonic crystal structures are important components of the toolbox for 

manipulating terahertz radiation. Silicon is an excellent material for the construction 

of photonic crystals because it has extremely low loss [32] and silicon processing 

technology is well developed. Silicon and GaAs PCSs have been demonstrated with 

band gaps near 1 THz [33,34] Metallic photonic crystal cavities coupled to metallic 

photonic crystal waveguides [21] have been shown to have multiple resonances with 

Q≈100. An approach that has been widely implemented at telecommunications and 

near-infrared wavelengths is based on two-dimensional 2D photonic crystal slabs 

PCS [35,36] such as the one we studied in chapter 4. 

For this work we kept the photonic crystal slab with a triangular lattice, and 

we select the L3 cavity which is a cavity formed by filling three holes along the ΓJ 

                                                 
4
 The preset work is published in Cristo M. Yee and Mark S. Sherwin, "High-Q 

terahertz microcavities in silicon photonic crystal slabs.", Applied Physics Letters, 

vol. 94 , p. 154104 , (2009)  
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orientation in the triangular lattice.  Cavities with this geometry have been widely 

studied at optical and near IR frequencies. This cavity has a particularly high Q value 

estimated to be 4700 for an isolated cavity.  The L3 cavity could reach Q factors as 

high as 500 000 and mode volume of order  𝜆 𝑛  3 by carefully adjusting the 

diameter and position of the surrounding holes [37,38,39]. Such cavities have been 

coupled to waveguides to create compact optical circuits. 

For measuring the quality factor of the L3 cavity we use a photonic crystal 

waveguide to pump power into the cavity. We also employed a waveguide for 

measuring the frequency spectrum of the light leaking from the cavity. We employed 

a Lorentzian filter configuration (see appendix C). In this configuration the cavity is 

embedded inside a waveguide. The resonant mode of the cavity is shown in the 

transmittance as a Lorentzian line in the transmission through the sample. 

For the purpose of characterizing the structure we were interested in the 

conduction of the photonic crystal waveguide and also in the resonant frequency of 

the cavity so silicon photonic crystal slab waveguides with and without embedded 

L3 photonic crystal cavities were designed and fabricated.  

We based our samples in a photonic crystal slab with a triangular lattice  and 

with the parameters r = 0.30a and t = 0.60a, where r is the radius of the hole, a is the 

lattice constant and t the thickness of the slab. This structure is known to provide an 

optical bandgap for transverse electric (TE) polarization. We constructed samples 

with lattice constant a=80 μm and 76 μm. For each lattice constant we fabricated a 

waveguide and a Lorentzian filter. The fabrication process was carried out at the 
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UCSB Nanofabrication facility. Ultraviolet lithography on a 44 μm thick silicon 

double-side polished wafer with a nominal resistivity 4kOhm-cm was followed by 

silicon deep reactive ion etching using a Plasma-Therm 770 SLR using the process 

described in chapter 4.  

 

Figure 5.1 Optical photograph of the photonic crystal slab 

 

We learned from chapter 4 that for a correct characterization of our samples 

we require the parameters of the structure.  The lattice constant and the hole size are 

well controlled by the lithography process, as verified by optical microscopy as 

shown in Figure 5.1. The thickness of the slab was measured prior to fabrication 

using far infrared Fourier transform spectroscopy (see Appendix E), and it was found 

to be 𝑡 = 44 ± 2 μm. 

   



 

 34 

Due to the spot size of the source (2 mm) and the size of the waveguide (≈ 

100 μm) the coupling of terahertz radiation from free space into a waveguide is 

small. To enhance the coupling into the waveguide entrance we incorporate into the 

structure a 2-D solid immersion lens.   

Each immersion lens consists of a semicircle with diameter of 2 mm which is 

integrated into the photonic crystal waveguide structure as shown in Figure 5.2. The 

samples with a = 80 μm (76 μm)   have length of the waveguide of 5.44 mm (5.472 

mm) with a total length (including the lenses) along the direction of the waveguide 

of 8.04 mm (8.072 mm) while  the width of the sample is 9 mm. 

 

 

Figure 5.2 Optical photograph of a photonic crystal waveguide with an integrated 

2D solid immersion lens with lattice constant a = 80 μm and thickness t=0.55 a. 
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To estimate the effect of the immersion lenses in the transmission we realize 

FDTD simulation of the whole structure. Figure 5.3(a) shows the calculation cell 

used in a full 3D FDTD simulation for the waveguide with immersion lenses; the 

figure corresponds to a plane centered in the middle of the slab. The corresponding 

theoretical transmittance for the waveguide with immersion lenses is reported in 

Figure 5.3(b).  The structure for the waveguide without the immersion lenses and it 

corresponding transmittance are shown in Figure 5.3(c) and Figure 5.3(d) 

respectively.  

From the FDTD simulation we have that the transmittance increased by as much 

as factor 10 for the structure without the immersion lenses. The reason is very 

simple: we have that the spotsize, 2mm, is larger than the input of the waveguide , 

about 100 μm, for the present structures. On the other hand the immersion lenses are 

about the same size of the spotsize. The factor of 10 comes from the bigger cross 

section of the beam that the lenses are able to focus into the entry of the waveguide. 

In figure 5.4(d) the lower frequency edge of optical gap is located at 1.03 THz 

and is clearly visible in the spectrum. A high transmittance is observed below the 

edge of the optical gap for the sample without lenses which is clearly not seen in the 

waveguide with immersion lenses. 
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Figure 5.3 Transmittance in a Photonic crystal slab waveguide with and without 

immersion lenses. The photonic crystal slab waveguide with an immersion lenses 

structure (a) and its FDTD transmission through the structure (b). The photonic 

crystal slab waveguide structure (c) and the transmission  through the structure (d) 

respectively. By comparing the transmittance (b) and (d) we have the immersion 

lenses improves significantly through the optical gap compared with the waveguide 

without immersion lenses. 

    

The low transmittance below the gap for the samples with lenses is produced by 

the diffraction from the focusing point in the entry of the waveguide; if it is below 

the optical gap of the photonic crystal the beam focused is no longer confined to the 

waveguide and low transmittance is the final result. We can increase the power into 

the waveguide by increasing the size of the lenses but it will increase also the size of 

the sample. We estimated that with the parameters of the structure the transmittance 

was large enough to characterize the photonic crystal cavities. 

We first characterized our waveguides by realizing transmission measurements. 

Figure 5.4 shows the experimental setup. The source is a continuous tunable source 
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manufactured by Virginia Diodes inc., the source consists  of a frequency 

synthesizer with a frequency span from 13.3 to 15 GHz. This is followed by a 

cascade of three frequency doublers and two frequency triplers. The final output is 

tunable from 0.9576 to 1.08 THz in steps as small as 72 KHz. The output launches a 

Gaussian beam with a 2mm beam diameter and 5μW average power. The sample is 

put in front of the source output and held in position by a metal slit to block the light 

which is not guided through the sample. Once the beam is transmitted through the 

sample a pair of of-axis parabolic mirrors collects the light and focuses into a 4K 

Silicon composite bolometer. A wire grid polarizer is located between the two 

parabolic mirrors to select the appropriate polarization. 

 

 

 

Figure 5.4 Transmission experimental setup. 
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Figure 5.5 Experimental data is shown and compared with the FDTD simulation 

for t = 46 μm and t = 44 μm for the 80 μm sample. 

 

Figure 5.6 Experimental data is shown and compared with the FDTD simulation 

for t = 45.6 μm and t = 43.7 μm for the 76 μm sample. 
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The experimental transmittance measurements are reported in Figure 

5.5(Figure 5.6) for the 80μm (76 μm) sample. We normalize the transmittance using 

the spectrum of the source and scaled to set the maximum in the waveguide 

transmission equal to one for each lattice constant.  

The results for the samples with lattice constant 80 μm are shown in Figure 

5.5. The waveguide starts transmitting at 1.015 THz.  In Figure 5.6 we present the 

transmittance for the sample with lattice constant a = 76 μm. We observe that the 

edge of the transmission  shifts to higher frequencies 1.053 THz as is expected for a 

sample with a smaller lattice constant. The frequency position of the edge of the 

transmission in both cases is less than 10 GHz, or within 1 % of the predicted value. 

 

Figure 5.7 The Lorentzian filter formed by inserting a cavity in a photonic crystal 

waveguide. The cavity consists of three holes missing along the J orientation in a 

single mode photonic crystal slab with a triangular lattice of holes 

 

The photonic crystal samples have the same dimensions as the waveguide 

samples. The Lorentzian filter is formed by inserting the L3 cavity into the 
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waveguide and is delimited by two holes at each side of the cavity as is shown in 

Figure 5.7.  

The Lorentzian filters were also characterized using the same transmittance 

setup. The transmittances for each lattice constant are shown in Figure 5.8 and 

Figure 5.9. For comparison we have also plotted the transmittance for the waveguide 

with the corresponding lattice constant. 

 

Figure 5.8 Transmittance through the waveguide and the Lorentzian filter for the 

sample with a=80 μm, a sharp resonance at 1.0296 THz in the Lorentzian filter, is 

associated with the resonance mode of the L3 cavity. 

 

We observe that for the sample with a=80 μm the transmittance for the 

Lorentzian filters presents a sharp resonance at 1.0296 THz that corresponds to the 

frequency of the cavity mode as shown in Figure 5.7. For the 76 μm shown in Figure 

5.8 the transmittance has the cavity resonance shift to 1.0724 THz, again consistent 

with the scalability property of photonic crystals. 
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Figure 5.9 Transmittance through the waveguide and the Lorentzian filter for the 

sample with a=76 μm, a sharp resonance at 1.0724 THz in the Lorentzian filter, is 

associated with the resonance mode of the L3 cavity. 

 

The resonances for the Lorentzian filters are fitted using a Lorentzian line shape. 

Figure 5.10 and Figure 5.11 shows the transmittance spectrum of the Lorentzian 

filter. Here we normalize the transmission spectrum of the filter using the 

transmission spectrum of the waveguide with the corresponding lattice constant. 

For the sample with lattice constant 80 μm the resonance frequency is 1.0296 

THz with a frequency width of 1.13 GHz which gives a Q value of 910 as shown in 

Figure 5.10. The resonance frequency for the 76 μm sample is located at 1.0724 THz 

with a frequency width 1.05 GHz or a Q value of 1020 as reported in Figure 5.11. 
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Figure 5.10 The transmittance through the filter is fit by a Lorentzian line center 

at 1.0296 THz with Q=910 for the 80 μm sample. 

 

Figure 5.11 The transmittance through the filter is fit by a Lorentzian line center 

at 1.0724 THz with a Q=1020 for the 76 μm sample. 

 



 

 43 

The resonant modes of the photonic crystal were analyzed using FDTD 

calculations for the resonant frequency and the quality factor of the structure. 

Temporal mode coupling theory [40]  predicts that the quality factor 𝑄𝑇   for the 

Lorentzian filter is given by: 

1

𝑄𝑇
=

1

𝑄𝑅
+

1

𝑄𝑊
+

1

𝑄𝑀
 

Where 1 𝑄𝑅  is the radiative loss of the cavity, 1 𝑄𝑊  is the loss associated with 

coupling to the waveguide, and 1 𝑄𝑀  is the material loss.  

Assuming that the material loss 1 𝑄𝑀  is zero, FDTD predicts that the quality 

factor for the Lorentzian filter  𝑄𝑅 + 𝑄𝑊 −1 = 1500.  Using these values we can 

estimate the material loss for the Lorentzian filter 1 𝑄𝑀   to be 432 and 313 μradians 

for the 80 and 76 μm lattice samples respectively.  

Lattice 

(μm) 

Frequency 

(THz) 

Quality Factor 

Q 

Experiment 

80 1.0296 910 

76 1.0724 1020 

3D-FDTD 

80 1.0293 960 

76 1.0742 1065 

Table I. Experimental frequency and Q values for the L3 cavity resonance mode 

and the 3D-FDTD simulated values for the structure. A loss of 432(313) μrad is 

included for the 3D-FDTD simulation for the 80(76) μm sample. 
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As a consistency check, FDTD calculations where performed with the 

estimated material losses, given a total Q value of 960 and 1065, which are close to 

those found in the experiments (see Table I).  

The absorption coefficient α can be calculated using the expression: 

𝛼 =
2𝜋𝑛𝑓

𝑐
𝑇𝑎𝑛(𝛿) 

Here we have that 𝑇𝑎𝑛(𝛿) is the loss tangent corresponding to the material 

loss, 𝑓 is the frequency and 𝑐 is the velocity of light. With these values the 

absorption coefficients are 0.318 and 0.240 cm
-1

 for the samples with 80 and 76 μm, 

respectively. These values are higher than 0.01cm
-1

, the reported value for intrinsic 

absorption in high quality silicon with resistance higher than 10 kΩ-cm [32] . The 

higher losses we observe indicate that our wafer has a lower resistivity than 10 kΩ-

cm (nominal resistivity 4 kΩ-cm) and there may also be small additional loss of 

unknown origin. 
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6 Transversal Magnetic Photonic crystal cavity 

In parallel to the fabrication and measurement of the TE photonic crystal slab 

we also studied the possibility of the construction for a Transversal Magnetic (TM) 

photonic crystal cavity. The search for a TM cavity is motivated by the fact that, for 

some applications, a small resonant cavity with electric field normal to the surface of 

a semiconductor wafer is desirable [17]. 

  We employed FDTD to test different design until we finally chose the cavity 

shown in Figure 6.1. The cavity consists in two holes missing along the ΓJ 

orientation in a triangular lattice of air holes in a silicon slab. The cavity is 

embedded in a waveguide and delimited by two holes at each side of the waveguide, 

forming a Lorentzian filter. The characterization of these structure was done by 

transmission and to enhance the coupling into the waveguide we used solid 

immersion lenses that we incorporate into the structure [41]. 

 Because of the fragility of this structure, which is only 21% Silicon in the 

bulk of the photonic crystal, we chose a Si slab much thicker than the 50 µm slab 

used in the TE samples discussed in the chapters 4 and 5.  The slab supports several 

transverse modes, up to five modes for the used thickness.  High-Q cavity modes are 

observed experimentally.  The assignment of the experimentally-observed modes to 

particular modes supported in the structure turned out to be significantly more 

complicated than anticipated at the beginning of this project. 

 The work plan for this chapter starts with the fabrication of the samples and 

the measure of the photonic crystal parameters. . We will start our measurements by 
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measuring the single most important feature of photonic crystal structure: its 

photonic crystal gap because within where a photonic crystal cavity mode could be 

found. The quality factor and frequency resonance of the cavity will we measure 

through a high frequency resolution transmittance using a narrow band tunable 

source. Then we will go through a heavy theoretical description of the cavity-

waveguide coupling, which ultimate goal is to indentify the resonant peak in the 

transmittance as a resonant mode of the cavity. The identification process strongly 

relies in the two dimensional picture of the cavity, i.e. the structure considering that 

thickness is infinite, in which the identification of the modes is simpler. Employing 

the symmetry set by the excitation pulse used in the experiment a single cavity mode 

is positively identifies as the one observed in high frequency resolution transmittance 

for the Lorentzian filter  

A. Sample Fabrication 

 

Figure 6.1 Optical photograph of the cavity embedded in the photonic crystal 

waveguide. The lattice constant is a=135 μm, the thickness t=2.81 a and the hole 

radius r=0.46 a. 
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The fabrication process was done at Nanotech UCSB Nanofabrication Facility. 

The process starts by using ultraviolet lithography to transfer a designed pattern to a 

single side polish 20 kΩ-cm high resistivity silicon wafer with nominal thickness of 

380 μm. The etching of the holes in the pattern was done using Deep Reactive Ion 

Etching (RIE) with a Plasma-Therm 770 SLR. The details of the fabrication are 

described in chapter 3 and the detailed recipes are in Appendix D. 

The thickness of the slab was thick enough to be measured with a thickness 

gauge. The average values found was 380 μm and the flatness specified by the 

vendor was 2μm thus the thickness of the slab is t=380±2 μm. The hole radius was 

specified to be r=0.45 however the optical microscopy measurements on the 

fabricated samples found a value of r/a = 0.465 ± 0.005 for the size of the hole, we 

attribute the discrepancy with a overetch and a macroloading effect (large exposed 

areas etch faster) in the RIE. 
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B. Photonic crystal gap measurements 

 

Figure 6.2 Terahertz time domain setup. A photoconductive switch is used as a 

broadband source and it is detected by electro-optic effects using a ZnTe crystal and 

balance photodiode bridge. 

 

Our first step was to measure the photonic crystal gap of our strcutre; for this 

purpose we employed a THZ-time-domain spectrometer (TDS); The THZ-TDS 

system that we employed in the experiment has significant better signal to noise in 1 

THz region compared with FTIR.  THz-TDS technique relies on the fact that short 

time pulses are formed by a large superposition of frequencies.  The typical setup 

consists in an ultra-short pulse typically around 100fs. The femtosecond pulse is 

divided into two beams. One beam is used as a probe beam while the other is used to 

excite an emitter. The emitter generates terahertz with bandwidth of a couple 
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terahertz depending of the generation scheme. In most conventional systems the 

exciting beam before striking the emitter goes through a Michelson interferometer, 

while the optical path of beam is kept fixed.  Once the terahertz beam is generated  it 

goes through the sample and then is focused into a detector together with the probe 

beam. The detector generates a signal that is a function of the electric field in the 

terahertz beam. The probe pulse, being shorter that the Terahertz beam, maps the 

electric field in the terahertz pulse as a function of the time delay of the excitation 

pulse. This creates a time trace of the electric field that could be Fourier transform to 

obtain the frequency information carried by the terahertz pulse. 

Our THz-TDs system is based on a Ti:Sa laser with a photoconductive switch as 

a source and detecting the signal through electro-optical. Single cycle terahertz 

pulses were produced when 70 fs pulses with a wavelength of 800 nm from a A 

Ti:Sa  oscillator were delivered to a photoconductive  switch.  The femtosecond 

pulse with energy above the bandgap generates carriers in the semiconductor 

substrate. The carriers are then accelerated by a bias produced by a metal pattern in a 

semiconductor substrate.  The bandwidth of the produced Terahertz is determined by 

the applied voltage and the pulse duration.  In our setup as shown in Figure 6.2 the 

switch consisted in an interdigitated structure [32] with a gap of 1.5 μm constructed 

on a semi-insulating GaAs substrate. The bias voltage was set to 1.5 V which results 

in an electric field of 10 kV/cm and the pulse energy of 2.5 nJ.  With these values the 

THz fields were a few tens of V/cm.  
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The beam was collimated and then refocused on to the sample with a spot size of 

about 500 μm using off-axis parabolic mirrors (OAPMs). The transmitted pulse is 

then analyzed by electro-optic detection in a 500 μm thick <110> oriented ZnTe 

crystal and Lock-In detection to the frequency of the modulated bias voltage was 

employed. The path of the THz radiation can efficiently be purged with dry nitrogen 

to avoid water absorption. For the transmission, the TEM polarized THz pulses are 

edge-coupled into the photonic crystal that was mounted in-between metal plates 

without further focusing elements beside the OAPMs. The beam was focus in the 

photonic crystal at a point locate around 2000 μm from the entry of the waveguide. 

Although better coupling methods have been developed [42], the coupling efficiency 

was large enough for our system.  

 In Figure 6.3 we show the time trace of the pulse traveling in the purged empty 

box, a single cycle pulse is generated and it has a time width of a few picoseconds. 

In Figure 6.4 we show the Fourier transform of the time trace. Here for the Fourier 

analysis we only considering the time window before the second pulse is measured, 

the second pulse is produces by the backside reflection inside the semiconductor 

substrate.  
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Figure 6.3 Time domain trace of the reference 

 

Figure 6.4 Fourier transform of the time domain trace. 
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From Figure 6.5 to Figure 6.7 we show the time domain trace and its 

corresponding transmittance for samples with lattice constant 140, 135 and 150 μm 

respectively; we use as a reference the transmittance of the single pulse in the empty 

box shown in  Figure 6.3 and Figure 6.4.  For the three samples a large dispersion 

from the single cycle reference is seen as is expected for a photonic crystal structure, 

especially for the frequencies components that are close to the stop bands of the 

structure where band dispersion in nearly flat.   

 

Figure 6.5 Terahertz time domain measurement. Time trace of the Electric field 

and THz pulse transmitted through the samples with lattice constant a=135 μm. A 

low transmittance from 0.835 to 1.074 THz shows a good agreement with the FDTD 

calculations. 
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Figure 6.6 Terahertz time domain measurement. Time trace of the Electric field 

and THz pulse transmitted through the samples with lattice constant a=140 μm. A 

low transmittance from 0.808 to 1.036 THz shows a good agreement with the FDTD 

calculations. 

 

Figure 6.5 to 6.7 shows a low transmittance region that is well matched by using 

FDTD simulations of the structure which for the three figures are shown in solid 

line.  The values for the low transmittance predicted by FDTD and found are shown 

in Table 6.1. The code used for calculating the transmittance in shown in Appendix 

F.  
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Figure 6.7 Terahertz time domain measurement. Time trace of the Electric field 

and THz pulse transmitted through the samples with lattice constant a=150 μm.  A 

low transmittance from 0.795 to 0.961 THz is consistent with the FDTD 

calculations. 
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Lattice 

constant 

Start 

frequency 

End 

frequency 

 

Width 

Gap to 

midgap 

(μm) (THz) (THz) (THz) (THz) 

Experiment 

150 0.795 0.961 0.166 0.189 

140 0.809 1.036 0.227 0.246 

135 0.835 1.074 0.239 0.251 

3d FDTD 

150 0.8265 0.9692 0.1427 0.1589 

140 0.8754 1.0356 0.1602 0.168 

135 0.9091 1.0877 0.1786 0.179 

Table 6-1 Photonic crystal frequencies experimental and theoretical values, the 

experimental error for the frequency is ± 10 GHz, corresponding to the resolution of 

the THz-TDS 

 

C. Photonic crystal gap theoretical calculation 

The next step is to compare the transmittance with the theoretical model for the 

photonic crystal. The thickness of the sample is several times the lattice constant and 

therefore the slab is not single mode. In principle there is not a complete gap. We 

will show that product of symmetry imposed by the THz beam used in our 

experiment produces a low transmittance frequency region that for all practical 

purposes works as an optical gap. This gap is the product of a stronger coupling to 

the lower mode in the slab compared to the higher slab modes. We will base our 
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argument in symmetries and in fact we will verify by using FDTD to calculate the 

transmittance through the photonic crystal as the ones shown in figure 6.5 to figure 

6.7. We will show that the coupling higher modes of the modes slab are negligible. 

1. Two dimensional calculation 

Let start our analysis by considering the two dimensional (infinitely thick) 

triangular photonic crystal. Figure 6.8 shows the band diagram calculated using 

MPB; with the code shown in Appendix F.  We show the Ez profile for several 

points along the ΓJ direction in the triangular lattice. We have that band 1, 3 and 5 

have their fields symmetric with respect to the ΓJ orientation and therefore could be 

coupled to a plane wave (or any symmetric beam) traveling along this direction 

while bands 2 and 4 with antisymmetric field do not couple to a plane wave.  For a 

symmetric in plane excitation we have that modes in bands 1, 3 and 5 will show a 

transmittance, while modes in bands 2 and 4 will not. 

From the band diagram we expect high transmittance up to 0.306, corresponding 

to the first band. There is an optical gap from 0.306 to 0.484 (c/a), correspond to the 

gap between band 1 and band 3. Then comes another small window of transmittance 

from 0.484 to 0.520 (c/a), corresponding to band 3. These optical gaps are confirmed 

by FDTD simulation as shown in Figure 6.9. 
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Figure 6.8 Two dimensional photonic crystal band diagram and Ez field for a 

specific point in the GJ orientation in the First Brillouin Zone 

 

 

Figure 6.9 Transmittance along the ΓJ orientation in the two dimensional 

triangular lattice of holes r=0.465a for a TM polarization.  
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2. Three dimensional calculation 

With the information obtained from the 2d case now we confront more easily the 

highly more complicated band diagram of the 3d photonic slab structure. We realize 

full 3D simulation of the photonic crystal slab using the parameters corresponding to 

the 135 μm sample (the qualitative description will be the same for all the samples). 

The code used is in Appendix F.  

The band diagram for the finite thickness photonic crystal slab is shown in 

Figure 6.10. Here we immediately notice the increase of the number bands in 

comparison with two dimensional structures as a consequence of the finite thickness. 

 

Figure 6.10 Three dimension Band diagram structure for the triangular lattice of 

holes 

 

Above the light line the modes are leaky i.e. they do not satisfy total internal 

reflection and therefore are not guided through the slab; these modes are for our 

purposes completely ignored.   
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Band # 1    

 

Band #2    

 

Band #3  

 

Band #4  

 

Band #5 

 

Band #6 

 

Band #7 

 

Band #8 

 

Band #9 

 

Band #10 

 

Band #11 

 

Band #12 

 

Band #13 

 

Band #14 

 

 Band #15 

 

Band #16 

 

Figure 6.11 Ez field profile for the photonic crystal slab with thickness t=2.81a 

and hole radius r=0.465a. 
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The modes below the light line are guided modes. In our experiment we excited 

the system with a THz Gaussian beam; the symmetry imposed by the excitation 

selects which modes are able to be excited and also the relative prominence of each 

mode in the transmittance spectrum. 

Our first selection rule is that modes which are not symmetric in the plane of the 

slab will not be exited. This rule is the same as the two dimensional case in which 

bands 3 and 4 in Figure 6.8 are not coupled. 

 

Figure 6.12 Band diagram for the in plane symmetric modes. Below the light line 

the modes are guided through the slab. Modes in the leaky region are not couple in 

the transmittance and are omitted here. 
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The second rule is a quantitative estimate of the relative intensity when there are 

more than one mode at the same frequency. This is a simple rule of thumb: the 

higher the harmonic the weaker the coupling is; i.e. a mode which has a higher 

number of nodes will couple weaker than a mode with a lower number nodes and 

that the coupling strength is proportional to the overlap between the field of the 

excitation beam and the field profile of the mode. 

To explain this selection of a hierarchy of the modes we show the Ez field profile 

at the J point in the Brillouin zone in Figure 6.11. The modes 1, 5, 7, 9, 10, 13, 14 

and 16 are symmetric with respect to the ΓJ orientation and they could be exited in a 

transmittance experiment.  After eliminating the bands which are not symmetric and 

keeping only the symmetric modes we have the band diagram show in Figure 6.12. 

In Figure 6.12 we marked with ● (solid circle) the band which has a single node,  

for example field mode in band 7 in Figure 6.11.  These bands are the analogues for 

the two dimensional case. These bands will be very strongly coupled by a Gaussian 

beam, providing strong transmittance from 0 to 0.3195 (c/a) for the first one node 

band and from 0.4899 to 0.5025 (c/a) for the second single node band.  

Bands marked with a ■ (solid square) in Figure 6.12 are bands with three nodes 

in the Ez field in the z direction, for example field mode in band 5 in Figure 6.11.  

They have a lower coupling relative to the single node bands. We expect a low 

transmittance when coupling to the modes in these bands. The three node bands 

dominate the transmittance from 0.3195 to 0.40751 (c/a), and from 0.5328 to 0.5371. 
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Finally bands marked with ▲ in Figure 6.12 are band with modes with 5 nodes 

in Ez field in the z directions, for example field mode in band 14 in Figure 6.11. 

These bands have the lowest coupling of all the bands shown in Figure 6.12. They 

dominate the transmittance where neither the single node nor the three nodes are 

present. They are dominant from 0.4792 to 0.4899 (c/a), 0.5025 to 0.51585 (c/a) and 

above 0.57831 (c/a). 

We have that there is an optical gap in the symmetric modes from 0.40751 to 

0.4792. Another small gap spans from 0.5371 to 0.57831. These gaps found from the 

band diagram of the bright modes are confirmed by FDTD simulation of the 

transmittance as shown in Figure 6.13. 

 

Figure 6.13 (a) Band structure of the in plane symmetric modes (b) transmittance 

along the   ΓJ orientation. 
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 The two dimensional model is extremely useful for understanding the 

properties of the more complicated three dimensional slab. Our argument is that the 

excitation beam selects the modes that we are able to couple and the lower modes 

(modes with a single node in the Z direction) with a symmetric field along the 

propagation direction are strongly dominant. If we just keep these single node modes 

we have a description that matches very well the two dimensional case as shown in 

Figure 6.14. However the match between the single node and the two dimensional is 

not surprising since the three dimensional band structure should asymptotically 

approximate to the two dimensional case as the slab increase it thickness. For the 

present parameter the three dimensional bands structure for single node symmetric 

modes are a few GHz higher that the corresponding two dimensional. The 

approximation of using the two dimensional case for explaining the more complex 

interaction between the THz beam and the 3D photonic crystal structure will be the 

warhorse for analyzing the  frequency response of the filter structure presented in the 

present chapter. 
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Figure 6.14 Three dimensional bright modes compared with the two dimensional 

photonic crystal band structures. 

 

The optical transmittance found in the experiment allows working in the optical 

gap which is in dimensionless frequency range of 0.40751 to 0.4792 (c/a). It is in 

this frequency range where the resonant cavity modes are located. 

D. Cavity mode measurements 

 Our purpose is to create a cavity with resonant frequency is the vicinity of 1THz 

for transverse electric polarization. Once we have selected it we need a way to 

characterize the cavity i.e. we want to know its resonant frequencies and its quality 

factor. We need either to produce light inside the cavity or couple radiation into the 

cavity. We use the later approach 
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For characterizing experimentally the resonant cavity of the photonic crystal we 

inserted the cavity into a photonic crystal waveguide forming a narrow band 

Lorentzian filter as shown in Figure 6.1.  We expected that from this configuration 

the peaks in the transmittance through the filter structure contained information on 

the resonance frequency of the cavity and its quality factor. 

Looking for resonant modes with high quality means narrow lines.  For a quality 

factor of 1000 at 1 THz for good characterization we require a frequency resolution 

at least 0.1 GHz. This resolution is not accessible by using THz-TDS. However it is 

easily obtained with our high resolution spectroscopy as shown in Figure 6.15. 

The Terahertz spectroscopy setup shown in Figure 6.15 is based on a solid state 

source made by Virginia Diodes inc., with a spectrum range from 0.9576 - 1.080 

THz tunable in 72Khz steps. It  outputs a polarized Gaussian beam with an average 

power of 5 μW with a spot size of about 2 mm. The samples were located at the 

output of the source and held in place by a metal plate. The output of the waveguide 

then is focused into a 4k silicon composite bolometer using two off-axis parabolic 

mirrors. A wire grid polarizer is positioned between the two parabolic mirrors to 

select the polarization of the electric field normal to the plane of the slab (TM). 
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Figure 6.15 Terahertz frequency domain setup. A 0.957 to 1.080 narrow band 

tunable source couples into sample. The signal is measured using a bolometer. 

 

The transmittance is measured across the range of the source. The results are 

shown in Figure 6.16. It’s worth mentioning that all the peaks that appear in the 

spectrum are somehow a resonance of the cavity; among the peak that appear in the 

spectrum we focus our attention on the isolate peak that appears around 0.99 THz for 

the 140 and at 1.020 for the 135 µm sample. These peaks are well defined and 

isolated from the rest which makes them more favorable for applications. 
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Figure 6.16 Frequency domain measurements for the Lorentzian filter. An 

isolated peak (signaled with an arrow) well inside the region of low transmittance of 

the photonic crystal is associated with a resonant mode for the cavity.(a) Here we 

only observe a high transmission region near 0.960 GHz (b) A resonant mode at 

located is 0.982 for the 140 μm sample. (c) A resonant mode is located at 1.020 for 

the 135 μm sample. 
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To verify that the isolated peaks that appear in Figure 6.16 are resonant modes 

we need to show that their frequencies and quality factors matches with the 

theoretical predictions.  

 

Figure 6.17 Frequency domain measurements for the Lorentzian filter in 

dimensionless units. An isolated peak located at  0.46 (c/a) is observed for sample 

with lattice constant a=140 μm and a=135 μm as shown in (b) and (c) respectively. A 

high transmittance center at 0.48 (c/a) is observed for the three samples.   
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Our first step is to plot the data from Figure 6.12 using dimensionless units as 

shown in Figure 6.13. We recognize that the features located at 0.48 (c/a) are similar 

for the three samples; however these features are not the most interesting part of the 

spectrum.  The most significant feature is the lower frequency peak in the 

transmittance within the stop band of the photonic crystal, which is associate with a 

cavity resonant mode and is located at 0.982 (1.020) THz for the 140 (135) μm 

sample. The transmittance also exhibits a high transmittance window, above 

1.015(1.053) THz for the 140(135) μm sample, that corresponds to the upper edge of 

stop band and in this region there are also several peaks corresponding to modes 

which are pushed into the stop band by the cavity. These modes however have 

smaller quality factors and are very close each other and to the band edge, making 

these modes less useful than the more isolate lower frequency mode.  

The location of the peaks in the transmittance for the filter with respect to the 

stops bands are more clearly observed by comparing them to the THz-TDS 

measurements of the photonic crystal.  

 Figure 6.18  shows the comparison of the broad band THZ-TDS of the photonic 

crystal transmittance (solid line) and the narrow band frequency domain 

transmittance (dotted line). For this sample with lattice constant a=150 μm we have 

that the edge of the gap, measured by THZ-TDS, is located at 0.960 THz. This 

feature is also observed in the frequency domain measurement.  
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Figure 6.18 Time domain and Frequency domain measurements for the 150 μm 

sample. Here we have that the edge of the stop band located at 0.960 THz matches 

with the high transmittance in the filter. Both measurements suggest that the edge is 

located precisely at 0.960 THz or in dimensionless units at 0.48 (c/a). 

 

Figure 6.19 also shows the edge of the optical gap shifted to higher frequency 

and located at 1.030 measured by THz-TD (solid line) for the 140 μm sample; above 

this frequency there is region of transmittance which is corroborated by the 

frequency domain (dotted line); in the spectrum it is clear that the peak at 0.9824 

THz in the transmittance for the filter is inside the optical gap; a unequivocal 

signature of a cavity resonance.  
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Figure 6.19 Time domain and Frequency domain measurements for the 140 μm. 

Here we have that the edge of the stop band located at 1.038 THz overlaps with a 

high transmittance in the filter. However the peak located at 0.9824 is well inside the 

low transmittance region of the photonic crystal. 

 

Figure 6.20 shows the edge of the photonic gap shifted to 1.074 measured by 

THz-TD (solid line) for the 135 μm sample; above this frequency there is region of 

transmittance which is corroborated by the frequency domain (dotted line); in the 

spectrum it is clear that the peak at 1.0209 THz in the transmittance for the filter is 

inside the optical gap; again an unequivocal signature of a cavity resonance.  
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Figure 6.20 Time domain and Frequency domain measurements for the 135 μm. 

Here we have that the edge of the stop band located at 1.074 THz overlaps with a 

high transmittance in the filter. However the peak located at 1.0209 is well inside the 

low transmittance region of the photonic crystal. 

 

The peaks in the transmittance located well inside the optical gap for the 

transmittance are the resonant modes for the cavity. For now we can fit them to a 

Lorentzian line shape. Figure 6.21 shows the Lorentzian fit of the resonances found 

by THz-FD. The fit reveals a resonant frequency at 0.9824 and a Q factor 1190 for 

the 140 μm sample; while for the 135 μm the resonance is located at 1.0209 and it 

has a Q factor of 1540. 
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Figure 6.21 Experimental data is fitted using a Lorentzian function. (a) For the 

140 μm sample the frequency mode is located at 0.9824 and has a Q value of 1190. 

(b) for the 135 μm sample the frequency mode is located at 1.0209 with a Q value of 

1540.  

 

E. Cavity mode theoretical calculation 

To analyze the results from the experimental measurements we realize FDTD 

simulation for structure. The full 3D simulation reveals three cavity resonances in 

the vicinity of the experimental peaks. The profiles of the modes are shown in Figure 

6.22. 

 In the transmittance experiment only on peak appears in the spectrum when 

there are three modes predicted by FDTD. The explanation relies in the actual 

coupling to the waveguide-cavity; a peak in the transmittance will only show in the 

spectrum if it can be couple to a waveguide mode.  
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Figure 6.22 The Ez field profile predicted by FDTD corresponding to three 

resonant modes located near the resonant transmittance peak for the Lorentzian 

filter. Figure (a) and (d) correspond to a cavity mode located at 0.4569 (c/a) with a 

Q=6900; which correspond to a frequency 1.0153 (0.9791) for the 135(140) μm 

sample. Figure (b) and (e) correspond to a cavity mode located at 0.46075 (c/a) with 

a Q=1300 corresponding to 1.0239 (0.9873) THz for the 135(140) μm sample. 

Figure (c) and (f) correspond to a cavity mode located at 0.46437 (c/a) with a 

Q=1630; which correspond to 1.0319 (0.9951) THz for the 135(140) μm sample. 

 

1. Two dimensional cavity modes 

We need to discard two of the three modes. We start first by calculating the 

waveguide modes for the more simple two dimensional photonic structure. 

In the case of the triangular lattice we have that the translation symmetry 

perpendicular to the slab (y-axis) is broken by the waveguide; however, we have that 

it has discrete translation symmetry along the axis of the waveguide, as shown in 

Figure 6.23. The modes for the waveguide could be divided in two main categories: 

continuous extended bulk modes and discrete localized modes. 
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Continuous extended modes are modes propagating along the waveguide but not 

exclusively bound to it; they extend into the bulk of the photonic crystal and 

therefore they coupled to the bulk photonic crystal modes and as a consequence the 

frequency spectrum for these modes is continuous. 

 

Figure 6.23 In a photonic crystal waveguide the translation perpendicular to the 

axis of the waveguide (y-axis) is broken; therefore the momentum in this direction is 

not conserved. The translation symmetry along the axis of the waveguide (x-axis) is 

still intact and therefore its momentum along this axis is conserved.  

 

The second category will be the modes which are propagating and are localized 

in the waveguide; therefore they are bounded and form a discrete set of frequencies. 

In conclusion the dispersion relation of the waveguide will be a mix of continuous 

extended bulk modes and a discrete set of localized modes  

 Our first step is to look for the bulk modes which are the photonic crystal modes 

which have kx conserved or constant.  These modes are characterized by a pair of 

parameters frequency ω and propagating vector kx. A mode with ω and kx  is a bulk 
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mode if there exists a ky such that ω= ω(kx, ky) is  photonic crystal mode. In other 

words we need to find the projection of the band diagram along the kx.   

 

 

Figure 6.24 The projection of the band diagram of the photonic cyrstal slab as a 

function of Kx. For a given Ko the frequency changes  continuously from the 

frequencies values determined by its intersection with the bands along the high 

symmetric direction in the irreducible zone 

 

The band projection along kx is the function ω =ω(kx). For constructing these 

projection we first consider the point kx=k0 in the first Brillouin zone as shown in 

Figure 6.24; the modes with a constant value of the kx are along the dotted line in  

Figure 6.24(a). We know that the dispersion relation ω =ω(kx,ky) is only 

discontinuous at the zone boundary, i.e. ω =ω(k0,ky) varies continuously from A to B 

while covering the frequency interval   𝜔 𝐴 = 𝜔Γ𝐽 Γ𝐴       = 𝜔Γ𝐽  𝑘0  to 𝜔 𝐵 =

𝜔ΓX Γ𝐵       = 𝜔Γ𝑋  
2𝑘0

 3
 ; There is also a continuous range of frequencies from the 

point B to C which are the frequencies  from 𝜔 𝐵 = 𝜔Γ𝑋  
2𝑘0

 3
  to 𝜔 𝐶 =
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𝜔Γ𝐽 ΓC      = 𝜔Γ𝐽  2𝑘0 ; and finally also there are a continuous range of frequencies 

from point C to D which are the frequencies from 𝜔 𝐶 = 𝜔Γ𝐽  2𝑘0  to 𝜔 𝐵 =

𝜔𝑋𝐽  𝑘0 ; where ωΓJ(k) is the band function along the ΓJ orientation,  ωΓX(k) the band 

function along the ΓX orientation and ωXJ(k) the band function along the XJ 

orientation in the first Brillouin zone. We can define the following “projection” 

functions in the interval  0 ≤ 𝑘 ≤ 𝜋
𝑎   as: 

 𝑏1 𝑘 = 𝜔Γ𝐽  𝑘   

 
𝑏2 𝑘 = 𝜔Γ𝑋  

𝑘

cos(30°)
 = 𝜔Γ𝑋  

2𝑘

 3
   

 

𝑏3 𝑘 =  
𝜔𝑋𝐽  𝑘     0 ≤ 𝑘 ≤

2𝜋

3𝑎

𝜔Γ𝐽  
4𝜋

3𝑎
− 𝑘   

2𝜋

3𝑎
  ≤ 𝑘 ≤

𝜋

𝑎
      

   

 

𝑏4 𝑘 =

 
 

 𝜔Γ𝐽  
𝑘

cos 60° 
 = 𝜔Γ𝐽  2𝑘    0 ≤ 𝑘 ≤

2𝜋

3𝑎

𝜔𝑋𝐽  
8𝜋

3𝑎
− 2𝑘         

2𝜋

3𝑎
  ≤ 𝑘 ≤

𝜋

𝑎
                          

  (6.1)     

 

We notice that if we consider k values larger that 𝜋/𝑎 the bands just flip their 

order as they fold back into the Brillouin zone, providing the same range in 

frequencies.  The First Brillouin zone is symmetric so we only need to define the 

projection function in the interval 0 ≤ 𝑘 ≤ 𝜋
𝑎 . 

In our case we are only dealing with modes that are symmetric along the 

direction of propagation so we only consider band which are symmetric (see bands 1 

3 and 5 in Figure 6.8). The gap in this particular case is delimited by band 1 and 3 so 
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only these two bands need to be considered. The projected bands function b1 to b4 

define in equation 6.1 are plotted in Figure 6.25. 

 

 

Figure 6.25 The projected band diagram over kx. Here b1 to b4 are the projected 

function defined in equation 6.1. For a give kx we have that the frequency changes 

continuously in k space from two consecutive intersections of the line with constant 

value kx and the zone boundary.  

 

Now that the extended bulk modes are obtained we are only left with the modes 

which are bounded to the waveguide; to calculate the bounded modes we used 

FDTD. These modes are obtained by exciting the waveguide with a pulse localized 

at arbitrary points inside the waveguide as shown in Figure 6.26. For a given value 

of kx we set the boundaries which are consistent with the Bloch function 𝑒−𝑖𝑘𝑥𝑥 .  

And we let the system evolve in time. We monitor the field at various arbitraries 
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points inside the waveguide region and waveguide modes appear as resonant 

frequencies of the cell structure. 

 

Figure 6.26 The unit cell employed in the calculations of the waveguide modes; 

the cell is excited by  a broad pulse in an arbitrary point in the cell, the fields inside 

are left to  evolve subject to the boundary condition set by the Bloch function, the 

resulting resonant frequencies are the eigenvalues for the particular Bloch function 

employed.  

 

In Figure 6.27 we show the localized modes for the waveguide, unsurprisingly 

being localized they lie in the region of the photonic gap. For the two dimensional 

structure that we are considering here there are 4 waveguide bands. The higher 

frequency bands are pulled from the continuous states down into the optical gap. The 

second higher frequency band is nearly flat. This particular band will have a very 

slow group velocity. An interesting feature is also observed here: there is an 

anticrossing between the two higher frequency bands; these bands in a bulk 

dielectric will cross each other but in the photonic waveguide the discrete translation 

symmetry produces a strong coupling between these two bands which produces this 

anticrossing.  
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Figure 6.27 Band diagram for the two dimensional triangular photonic crystal. 

The gray areas are continuous bulk modes while the solid lines are the localized 

modes of the waveguide. A more detailed look at the zone boundary of the three 

upper frequency bands reveals an anticrossing between the two higher waveguide 

bands. 

 

The waveguide band structure in now known. We have now calculated the 

resonant modes of the photonic crystal cavity for a two dimensional crystal. The idea 

is that the coupling among the waveguide and the cavity will be similar in the two 

dimensional case as in the three dimensional photonic crystal slab; also from the 

measurement of the photonic crystal gap we have that the two dimensional model is 

a good first approximation of the properties of three dimensional structure.  

Figure 6.28 shows the field profile and the resonant frequencies for two modes 

which are very close to those found in the experiment. 
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Figure 6.28 The Ez field profile for two resonant modes of the two dimensional 

photonic crystal cavities. (a) The resonant frequencies is located at 0.4527 (c/a) and 

(b) the resonant frequency is located at 0.4601 (c/a). 

 

The modes in Figure 6.28 have the same field configuration as modes (a) and (e) 

in Figure 6.22  found in the three dimensional photonic crystal slab.  

To qualitatively describe the coupling between the modes in Figure 6.28 we plot 

the resonant frequency of the cavity in the waveguide band diagram. We examine 

the Ez field profile in a few selected points in the waveguides. The points marked in 

the dispersion relation as C and F show the field of the waveguide at the coupling 

frequency. We  see the field profile in C has a three nodes in y direction and a single 

node in the x direction which matches very well the field configuration 

corresponding to the modes shown in Figure 6.28(b). The mode profile for the 

waveguide  at point F, and in general the band that contains F, has a single node 

while the field corresponding to the mode in Figure 6.28(a) has three nodes; 

therefore the coupling is negligible.   
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Figure 6.29 Band diagram of the waveguide showing the coupling point between 

the waveguide and the cavity. For the marked points in the band diagram we show 

the field configuration. Here the dotted (blue) line corresponds to the lower 

frequency mode shown in figure 6.28(a). The solid (red) line corresponds to the 

higher frequency cavity mode shown in figure 6.28(b).   

 

2. Three dimension cavity modes 

By studying the simpler two dimensional case we can explain more easily the 

coupling the three dimensional photonic crystal slab. The waveguide band diagram 

for the three dimension photonic crystal wave guide as shown in Figure 6.30 is 

constructed in the same way as in the two dimensional case. 

The situation for the three dimensional case has a few more complications. The 

first is that there is a light cone and, within this region, the modes leaks out of the 

slab.   Being in the light cone means that that the wave vector is complex and 

therefore exponentially decays as it propagates.  If a particular cavity mode couples 

to one of these nodes it will have a very small transmittance through the filter as it 

will be exponential attenuated. In the frequency region near the resonant modes of 
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the cavity we have four band instead the three that appear in the two dimensional 

case
5
. 

 

Figure 6.30 Band diagram of the photonic crystal waveguide showing the 

coupling point between the waveguide and the cavity.  For the marked point the band 

diagram we show the field configuration in the plane of the waveguide and also the 

field across the thickness of the slab. 

 

From the four waveguide bands that appear in Figure 6.30  three bands can be 

associated directly to the two dimensional bands and they are the ones whose Ez 

field has a single node in the z direction. The extra waveguide band is located in the 

light cone and in the continuous states it has three nodes. By examining the field we 

have that it is just a harmonic of the waveguide band that contains the point D in 

Figure 6.30. Using the same argument that for the two dimensional case we can 

discard the cavity mode corresponding to Figure 6.22(a) due to it having three nodes 

while the waveguide to which it could couple only has one node. The cavity 

corresponding to Figure 6.22(a) on the other hand can only strongly couple to the 

                                                 
5
 In the two dimensional case, four bands appear but only three are in the vicinity 

of the cavity resonances as is shown in Figure 6.29. 
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extra band with three nodes and is on the light cone therefore the coupling to this 

particular mode will not show up in the transmittance spectrum. 

After discarding two modes in Figure 6.22 we have that only one mode is able to 

properly couple to the waveguide. This mode which corresponds to Figure 6.22(e)-

(f) is a cavity resonance mode appearing in the transmittance. Its frequency position 

is at 1.0319 (0.9951) THz for the 135(140) μm with a quality factor Q=1630. We 

have that by employing temporal coupled mode theory (Appendix  C) the ratio of the 

resonant frequency divided by the  width of the resonant peak is the quality factor of 

the cavity. We have that the Q factors found in the experiment are 1190 with a 

resonant frequency of 0.9824 THz for the 140 μm sample and Q=1540 with resonant 

frequency at 1.0209 for 135 μm sample.  The departure from the perfect Lorentzian 

line for the 135 μm sample could be explained as a result of the coupling in the 

nearly flat region of the waveguide while the cavity in the 140 μm sample is located 

a slightly smaller dimensionless frequency 0.4584 (c/a) compared to 0.4594 (c/a) for 

the 135 μm and therefore in the linear region of the waveguide.   

The discrepancy for frequency resonance between the experiment and the 

theory is 10 GHz or 1% explained by an error in the FDTD or by small differences in 

the parameters of the structure being simulated. 
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7 High-Q photonic crystal cavity for 0.24 THz 

electron spin resonance. 

 In this chapter we move our attention to the sub THz regime where an intense 

work has been done on characterizing complex system by using Electron Spin 

Resonance (ESR) at 8.5 Tesla. ESR is a powerful technique in which a high Q low 

volume cavity will enhance the sensitivity of the system, and therefore a motivation 

for exploring the possibility of integrating a terahertz photonic crystal in a well 

establish experimental technique. 

The strategy we use for constructing a photonic crystal cavity at 0.24 THz 

follows the trend from the previous chapter where an L3 cavity with a TE 

polarization shows a cavity resonance as high as 1020 [41].  

Using the property of scalability of photonic crystals for working at 0.24 THz we 

only need to scale our samples properly. For a frequency of operation  at 0.24 THz 

we are required to construct our samples using a lattice constant of a=335 μm in a 

190 μm thick wafer. The fabrication process is explained in chapter 3 and the 

complete recipe is reported in appendix D. 

We characterize our sample using a transmission experiment and scattering. For 

the transmission experiment we use the setup shown in Figure 7.1. The THz source 

is manufactured by Virginia diodes Inc. It  consists of a frequency synthesizer that 

covers the range from 14 to 16 GHz. It is then followed by four frequency doublers 

multiplying the signal by 16 times to cover the range from 0.225 to 0.255 THz in 
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steps as small 16Hz. It has frequency dependent power ranging from 10 to 

30mWwith the power around 240GHz approximately 20mW. The source launches a 

Gaussian beam which at 240GHz has beam waist diameter of 5.6 mm. 

 

 

Figure 7.1 Experimental setup. (a) Transmission configuration. (b) Scattering 

configuration. 

 

The source is mounted into a setup designed by Tomas Keating, Inc.; The source 

is mounted on a 45 degree plate and it passed first through a wire grid polarizer 

which is polarized also at 45 degree to match the polarization of the source. The 

beam then passed through a 45 degree Faraday rotator to eliminate standing waves. 

The beam emerges at the end with vertical polarization with respect to the optical 

table. An off-axis parabolic mirror focuses the beam into a sample. Here any 

reflection that comes from the sample will be rotated an additional  45 degrees and 
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will be cross polarized to the first wire grid and be taken out of the system 

eliminating standing waves between the sample and the source. 

A similar strategy is used for the detection. But this time the detection part of the 

setup is mounted on a movable arm that can rotate 90 degrees. It consists on an off-

axis parabolic mirror which collects the light and then it goes to a wire grid polarizer 

with axis perpendicular to the table. Then it goes to a 45 degree Faraday rotator and 

is then detected with a Schottky diode which is polarization selective. This 

configuration eliminated the standing waves formed either from the source to the 

sample and from the sample to the detector.  The configuration could be used in two 

schemes: a direct transmission with the configuration shown in Figure 7.1(a) or by 

measuring the scattering as shown in Figure 7.1(b). 

 

 

Figure 7.2 Photonic crystal waveguide 

Our first measurement was the characterization of a waveguide as shown in 

Figure 7.2 . The waveguide is a linear defect along the TJ directions in the triangular 
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lattice. The dimension of the sample are 9 mm by 14 mm. The samples have an 

immersion lenses for increasing the coupling from and into free space. 

 The spectrum of the photonic crystal waveguide is shown in Figure 7.3; we used 

as a reference the source spectrum in free space. The spectrum shows a sharp 

transmittance edge at 237 GHz. The waveguide has a sharp transmittance edge and 

also a dip in the transmittance at 242.5 GHz. 

 

Figure 7.3 Photonic crystal waveguide transmittance. The transmittance is 

normalized using the spectrum of the source. At sharp transmittance turn on is 

visible at 236 GHz while a dip in the transmittance is located at 242.5 GHz.   

 

Once we now have a photonic crystal waveguide working in the desire frequency 

range we proceed to construct a photonic crystal cavity. The sample design relies on 

the L3 cavity, which is a cavity formed by removing three holes in the ΓJ orientation 

in a triangular lattice. The L3 cavity was inserted into a photonic crystal waveguide 
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forming a structure known as Lorentzian filter. This structure is the same type that 

one used in the two previous chapters. We have several samples that we can divide 

in two main sets: The first set consists of three samples where we change the number 

of holes that form the barriers which define the cavity in the waveguide from two to 

four holes. The second set of samples consists of cavities with barriers consisting of 

three holes where the hole closest to the cavity in the waveguide is shifted outward 

enlarging the cavity as shown in Figure 7.4.  The shifting of the inner hole tunes the 

quality factor of the cavity. In particular Figure 7.5 shows a sample with three holes 

as a barrier for the photonic crystal cavity. The dimensions for both sets of samples 

are the same that were used for the waveguide, 9 mm by 14 mm. We also included a 

pair of immersion lenses in each sample, enhancing the in/out coupling from free 

space into the device. 

 

 

Figure 7.4 The cavity quality factor of an isolated cavity (not coupled to any 

waveguide) can be tuned by displacing the nearest hole to cavity outwards (a). The Q 

factor changes as a function of displacement in (b), also a small change in frequency 

is induced by the effective index of the cavity mode. 
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Figure 7.5 Photonic crystal Le cavity inserted into the waveguide. Here three 

holes delimit the cavity in the waveguide forming a narrow band Lorentzian filter 

 

The effective quality factor, i.e. the ratio of total energy stored to the energy lost 

per cycle, in a photonic crystal could be written as: 

 1

𝑄
=

1

𝑄𝑖𝑛
+

1

𝑄𝑟
+

1

𝑄𝑎𝑏𝑠
+

1

𝑄𝑓𝑎𝑏
 (7.1) 

 

Here every term is associated with a different loss mechanism, Qin is the in plane 

loss associated with the two dimensional photonic crystal, Qr is the radiative loss to 

free space (also in the literature it is called QV or vertical loss), Qabs is the material 

absorption and finally Qfab is the loss associated with surface roughness and in 

general any deviation from the desired structure as a product of the fabrication 

process. This last loss is negligible at terahertz frequencies due to the size of the 
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samples; however Qabs is the limiting factor at room temperature. At 240 GHz the 

material loss is produced by free carrier absorption. 

The in plane loss Qin could be made very large by increasing the length of the 

crystal surrounding the cavity. In the case of our samples which are in the Lorentzian 

filter scheme the in plane loss is dominated by the waveguide coupling. 

The radiative or vertical loss could be minimized by carefully choosing the 

design of the cavity. One way to increase Qr (i.e. decrease the radiative loss) was 

first suggested by S. Noda et al [25]. They correctly addressed that by reducing the 

abrupt discontinuity of the field inside the cavity i.e. by letting them penetrate inside 

the dielectric mirror we are “gently confining” the fields, and so they do not 

suddenly vanish at the interface and the leaky component are minimized.  

The key to having a very effective mirror is periodicity. Therefore if we want to 

make the mirror a little less reflective we only need to change the periodicity. There 

are several ways to change the periodicity however the simplest way is just to move 

the holes that are delimiting the cavity as shown in Figure 7.4. 

Figure 7.4 shows the calculated quality factor and frequency for a cavity with a 

thickness a=0.6 and hole radius r=0.30 for an index of refraction n=3.42 with a 

lattice constant a=335 μm correspond to our samples. It is important to notice that 

the highest quality is located around Δs=0.15a. We also notice a very small resonant 

frequency shift to a lower frequency from Δs=0 to Δs=0.25. As we increase the size 

of the cavity the effective index of refraction of the cavity in also increased, pushing 
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the mode to a lower frequency until it is large enough to be more energetically 

favored for it to have an extra node.   

To understand the effect of the holes displacements consider the field profile 

corresponding to the resonant mode of cavity.  Figure 7.6 (a) shown the Ey field 

component and Figure 7.6(b) the Fourier components of the Ey field for the 

unmodified cavity Δs=0.00. We clearly see that the modes are delocalized in the 

Fourier space mostly confined in the X point, this modes extends weakly into the 

leaky region. Being relatively small this cavity has an intrinsically high Q value. 

Figure 7.6 (c) and Figure 7.6(d) shows the Ey field and its two dimensional Fourier  

transform, again the mode is mostly confined in the X point in the reciprocal space 

but now as a comparison with Figure 7.6(b) the leaky components are negligible and 

therefore it has a higher Q value.  
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Figure 7.6 The cavity field for bare L3 cavity for the simple cavity (not 

displaced) and for the tuned cavity. (a) The Ey field profile for the simple L3 cavity. 

(b) The Fourier transform of the Ey field shows field component in the leaky zone 

marked by the circle. (c) Field component of the tuned L3 cavity. (d) The Fourier 

transform for the tuned cavity shows a significant decrease in the leaky component 

of the cavity with respect to the original L3 cavity and therefore a higher Q value.   
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A. Photonic crystal resonance as a function of the length of 

the barrier in a Lorentzian filter 

Our first set of samples looks to increase the quality factor by increasing the in 

plane quality factor which for the Lorentzian filter is dominated by the waveguide 

coupling Q . We increase Q by adding more holes to form the barrier that set the 

boundaries of the cavity inside the waveguide. We expect that as we increase the 

number of holes the quality factor should also increase.  

Figure 7.7(a) corresponds to a filter in which there are two holes delimiting the 

cavity inside the waveguide. The spectrum shown a prominent peak located at 

243.77 GHz which is associate with a cavity resonance. We clearly observe the edge 

of the gap located at 231 GHz and also we have small transmittance from 238 to 240 

GHz which is associated with the continuous states of the bulk photonic crystal. In 

Figure 7.7(b) we show a close up into the resonance located at 243.77 GHz the 

resonance could be fitted using a Lorentzian line. The quality factor associate with 

the resonance line is Q=1313.   

In Figure 7.7(c) we show the transmittance for the L3 cavity but this time the 

cavity is delimited inside the waveguide by three holes. We observe in the 

transmittance a resonant peak located at 243.36 GHz associate with a cavity 

resonance, there is also a prominent peak at 252 GHz which correspond to a higher 

frequency mode of the L3 cavity. 
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Figure 7.7 Transmittance through the filter for samples with two, three and four 

hole barriers. For the sample with two and three holes a sharp resonance at a 

frequency corresponding to a cavity mode is found. For the sample with four holes 

no frequency was found that could be associated with a resonance. (a) and (b) 

correspond to two hole barriers. (c) and (f) the transmittance for three hole barriers. 

(e) Transmittance for the sample with a four hole barrier. 
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This higher frequency mode corresponds to the cavity mode in which the Ey 

field is antisymmetric with respect to the y axis. This particular high frequency 

cavity mode has the inconvenience that its quality factor is considerably lower. The 

resonant cavity mode located at 243.36 GHz is fitted using a Lorentzian line with a 

Q=1230 as seen in Figure 7.7(d). 

Finally in Figure 7.7(e) we show the transmittance corresponding to a filter in 

which the L3 cavity is defined inside the waveguide by four holes at each side. The 

spectrum shows the transmittance edge of the photonic crystal and also a small 

transmittance at 238 to 240 GHz corresponding to the bulk modes in the photonic 

crystal. There is no signal above this frequency which is consistent if we recall that 

the coupling from the waveguide into the cavity decreases rapidly with the 

separation as shown in Figure 7.8, which is also reported in the literature [43].  

 

Figure 7.8  (a) In plane quality factor as a function of the number of holes. (b)  

Transmittance as a function of the number holes in the barrier. 
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Figure 7.8 shows Q as function of the number of holes and also the calculated 

transmittance assuming no material absorption.  We have that the transmittance 

decreases dramatically from two to three holes and is very small for four holes which 

agrees with the relative magnitude of transmittance as shown in Figure 7.7 (b) and 

(c). We were expecting that the quality factor would increase; however, we clearly 

see that it does not in the experiment. This particular issue is treated in more detail in 

the next section. 

B.  Photonic crystal resonance as a function of the hole 

displacement in the barrier for a Lorentzian filter 

 

In section A we analyze the effect of the length of the barrier in the cavity 

resonance. In the present section we will consider the effect of the hole displacement 

in the frequency and quality factor of the cavity.  

The set of samples that we are considering here are an L3 cavity with a three 

hole barrier as shown in Figure 7.5 in which the inner hole in the barrier as shown in 

Figure 7.4 is displace from its original position. The dependence of the resonant 

frequency and the quality factor as a function of the hole displacement for a three 

hole barrier is shown in Figure 7.9.  
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Figure 7.9 Quality factor and resonant frequency for the L3 cavity with a three 

hole barrier inside a photonic crystal waveguide. 

 

The experimental results for the 6 different samples are shown in Figure 7.10 and 

in Figure 7.11 we show the detail of the peak in the transmittance that we associate 

with the resonant mode of the cavity.  

As we see in these measurements we have that the quality factor degrades as we 

make the theoretical values of the cavity higher. This apparent discrepancy may be 

solved if we consider the effects if non linear waveguide dispersion on coupling with 

the cavity. 
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Figure 7.10 Transmittance through the filter for different displacement of the 

inner hole of the cavity. (a)  for Δs=0.00, (b) for Δs=0.05, (c) for Δs=0.10, (d) for 

Δs=0.15, (e) for Δs=0.20 and (f) for Δs=0.25. 
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Figure 7.11  Lorentzian fit for the resonant peak found in the transmittance as a 

function of inner hole displacement. (a)  for Δs=0.00, (b) for Δs=0.05, (c) for 

Δs=0.10, (d) for Δs=0.15, (e) for Δs=0.20 and (f) for Δs=0.25. 
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To understand the effect of the non-linear regime of the waveguide we shown in 

Figure 7.12(a) the waveguide dispersion.  Comparing to the cavity resonance in  

Figure 7.9 we have that they are very close to the flat region of the waveguide. The 

importance of being close to the flat region is that the coupling from the waveguide 

into the cavity is roughly dependent of the inverse of the group velocity.  The group 

velocity is shown in Figure 7.12(b) although the calculation is more complicated 

[44] we can extract a important piece of information from here, that the coupling is 

very large for k vectors close to the zone boundary.  

 

Figure 7.12 (a) Waveguide dispersion. (b) The coupling waveguide-cavity at first 

approximation is proportional to inverse of the group velocity. 

 

This is essential to explain the results from the transmittance. In the linear regime 

of the waveguide the coupling factor is directly a factor multiplied by the group 

velocity and therefore a constant. The response is a simple Lorentzian line. However 

as shown in Figure 7.6(d), for a high Q cavity most of the components are near the 

zone boundary and therefore the coupling at the points is higher. As a consequence 
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the Q factor is no longer the center frequency divided by the full width at half 

maxima of the transmittance. In particular, the coupling for the higher quality factor 

with its components in k space more confined at the zone boundary will be stronger. 

As we can see the magnitude in the transmittance for the sample with Δs=0.15 is the 

highest of all, which also correspond to a resonance with the larger frequency width, 

a larger transmittance means a larger in plane coupling. Also in the transmittance 

there is a small kink below the resonant peak, which is nothing else than the effect 

that as the group velocity goes to zero, i.e. the density of state increases abruptly as 

we approach to the zone boundary. This higher density of states allows the fields  to 

be evanescently couple from the input waveguide into the output waveguide and 

gives us a good reference as to how far the resonant frequency is with respect to the 

edge of waveguide. 

In conclusion the cavity has a larger quality factor than the one that can be 

inferred from the measurement.   

We also did a scattering measurement, but also as we see in Figure 7.6(d) a high 

quality cavity means that there is almost no component near the Γ point in the 

Brillouin zone, which means that the radiation into free space will be nearly parallel 

to the surface of the sample. Having in our setup a finite numerical aperture we 

expect that the measurement of the scattering produced by the cavity will be very 

small, as indeed we were only able to measure the scattering from two samples 

which are shown in Figure 7.13.  
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Figure 7.13 (a) Full frequency range measurement of the light scattering by the 

cavity for the sample with a two hole barrier. (b) Lorentzian fit for the cavity 

resonance found for a two hole barrier. (c) Full frequency scan for the sample with a 

three hole barrier and Δs=0.05. (d)  Lorentzian fit for the cavity resonance found for 

a three hole barrier and Δs=0.05. 

 

We have that the shapes of the scattering out of the plane for the two samples that we 

were able to measure are very symmetric and they are fit very well using a 

Lorentzian line shape. We have that the values measured are considerably higher 

than the ones obtained for the same sample in the transmission mode; also the 

frequency is very slightly (less that 1/1000) shifted to higher frequency. The 

essential difference with respect to the transmission mode is that while in 
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transmission there is a frequency cutoff in the transmittance. This cutoff is inexistent 

for the radiation into free space and therefore the Q factor is directly the center 

frequency dived by width of the Lorentzian line.    

 Thus we have that the sample with a three hole barrier with Δs=0.05 has a 

quality factor of 3800. This is the highest measured for a photonic crystal cavity at 

Terahertz frequencies, and is the highest quality factor measured at room 

temperature\. The predicted quality factor for this is 6850 so that sets an estimated 

loss of 1/3800-1/6850=117 μrad which is consistent with the values reported in 

literature [45]. 
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C. Photonic crystal resonances in the channel drop 

configuration. 

An alternative cavity-waveguide coupling scheme to the Lorentzian filter is the 

channel drop configuration [25,46]. A cavity is located adjacent to the waveguide 

and the evanescent field is coupled to the cavity as shown in Figure 7.14. The flux 

through the waveguide shows a drop in its transmittance produce by the coupling to 

the cavity, the magnitude of the drop is given by  𝑄 𝑄𝑟  2  where Qr  is the radiative 

loss and Q  is the total quality factor of the cavity.  The limitations present in the 

Lorentzian filter, for which the transmittance becomes increasingly small as the 

quality factor of the cavity is increased, are not present for the channel drop 

coupling, since the in-plane quality factor Qω could be always be made comparable 

to Qr and therefore Q and Qr are comparable. 

 

Figure 7.14 Photonic crystal cavity in the channel drop configuration 
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We constructed two set of samples in the channel drop configuration. The cavity 

was located two and three rows of holes from the waveguide. Figure 7.14 shows a 

sample with three rows separation from the waveguide. For each separation distance 

from the waveguide we fabricated six samples displacing the nearest hole in the 

cavity as shown in Figure 7.4(a). The total size of the sample is 10X10 mm, with 

3mm diameter immersion lenses to enhance the coupling between the sample and 

free space.    

The typical spectrum of a channel drop transmittance is shown in Figure 7.15. 

The spectrum here was not normalized due to that the width of the drop is expected 

to be very small since the transmittance does not change abruptly. 

 

Figure 7.15 Typical transmittance for a Channel drop L3 cavity. A clear drop in 

the transmittance is visible in the vicinity of 240 GHz. 
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The spectrum shows a clear turn on in the transmittance of the waveguide, with a 

clear drop located in the vicinity of 240 GHz. The frequency width of the drop is 

around 0.2 GHz. A detailed zoom of the transmittance is shown in Figure 7.16. Here 

due to that the transmittance does not changes abruptly and the frequency width of 

the drop is small, we can consider the reference transmittance to be a linear function. 

By reference transmittance we mean the transmittance considering that the cavity is 

decoupled from the waveguide. The ratio for the transmittance value in the deepest 

point in the transmittance to the reference line is a measure of the coupling strength 

of the cavity – waveguide system. From appendix C, we have that for the channel 

drop scheme the magnitude of the drop is given by  𝑇1 𝑇0 =  𝑄 𝑄𝑟  2 . Here T1 is 

the transmittance value in the deepest point in the drop; T0 is the value of the 

reference line at the frequency corresponding to the deepest point in the drop, Q the 

quality factor of the waveguide and Qr the radiative loss.     

 

Figure 7.16 (a) A detailed zoom into the drop zone of the transmittance, the 

reference line is the estimated transmittance if the cavity was decoupled from the 

waveguide. The ratio of the transmittance with respect to the base line is a measure 

of the coupling strength of the waveguide –cavity system. (b) Lorentzian fit of the 

transmittance drop obtained by subtracting the drop signal from the reference line.   
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The drop into the waveguide is obtained by subtracting the drop signal from the 

reference line in the transmittance as shown if Figure 7.16(a). The drop signal is then 

fitted using a Lorentzian line and with the quality factor Q of the cavity given by 

Q=ω0/Γ where Γ is the width at half maxima. This process is repeated for two set of 

samples. 
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Figure 7.17 Transmittance of cavity waveguide coupled using the channel drop 

configuration as a function of the inner hole displacement, the zone marks the 

position of the drop. (a)  for Δs=0.00, (b) for Δs=0.05, (c) for Δs=0.10, (d) for 

Δs=0.15, (e) for Δs=0.20 and (f) for Δs=0.25. 
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Figure 7.18 Transmittance of cavity waveguide coupled using the channel drop 

configuration as a function of the inner hole displacement. (a)  for Δs=0.00, (b) for 

Δs=0.05, (c) for Δs=0.10, (d) for Δs=0.15, (e) for Δs=0.20 and (f) for Δs=0.25. 
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The transmittance spectrum for channel drop samples with two and three row 

separation as a function of the displacement of the nearest hole to the cavity are 

shown in Figure 7.17 and Figure 7.18, The detailed characteristics of the 

transmittances are reported in table 7.1. 

Table 7.1 Experimental values for the cavity - waveguide coupled system in the 

channel drop scheme. Here for sample with three holes and displacement Δs=0.10 

and Δs=0.15 not clear drop is observed. 

 

Δs fc  (GHz) Δf (GHz) T1/T0 Q Qr 

Two hole separation 

0.00 239.608 0.2760 0.4103 868 1355 

0.05 240.067 0.2121 0.2201 1132 2412 

0.10 239.318 0.2030 0.3463 1179 2003 

0.15 235.808 0.1601 0.0920 1473 4856 

0.20 239.270 0.1849 0.2373 1294 2656 

0.25 240.334 0.2562 0.2205 938 1997 

Three hole separation 

0.00 240.1027 0.3745 0.0705 641 2414 

0.05 240.0605 0.2111 0.2619 1137 2428 

0.10 N/O N/O N/O N/O N/O 

0.15 N/O N/O N/O N/O N/O 

0.20 236.528 0.1536 0.1250 1539 4355 

0.25 240.623 0.29568 0.2664 813 1575 
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For the set of samples with two holes separation between the cavity and the 

waveguide we observe a change in the quality factor of the cavity coupled to the 

cavity and in the radiative quality factor, the trend is more clearly seen in Figure 

7.19. 

 

Figure 7.19 (a) Total quality factor of the L3 cavity in the channel drop 

configuration as function of the inner hole. (b) Radiative quality factor as a function 

of the displacement derived from the quality factor Q and the magnitude of the drop. 

 

As we expected Figure 7.19(a) shows the quality factor of the structure should 

increase with the displacement as it has a maximum between Δs=0.15 and Δs=0.20, 

while the radiative quality factor also shows a peak for Δs=0.15 Figure 7.19(b). 

  For the set of samples with three rows separation we notice that  we’re able 

to observe a drop for all the samples except for two samples with three hole 

separation and displacement Δs=0.10 and Δs=0.15.  However the measured drops 

reveals the same trend as I begin to increased from Δs=0.00 to Δs=0.10 and 

decreased from Δs=0.20 to Δs=0.25. 

 To complement the transmittance measurement we also realized scattering 

measurements. Again due that a high Q cavity has a radiation distribution nearly 
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parallel to the surface of the sample we were only able to measure few samples. The 

measured samples are reported in Figure 7.20.  

 

Figure 7.20 Transmittance and scattering measurements for the samples that we 

we’re able to measure a scattering signal.(a) Two rows separation Δs=0.05. (b)  Two 

rows separation Δs=0.10. Two rows separation Δs=0.25. Three rows separation 

Δs=0.05. 

 

Figure 7.20 shows the scattering and the transmittance for the samples that we 

were able to obtain a scattering signal from. We observe that the scattering signal 

peaks where the transmittance has a drop as expected. The frequencies is slightly 

higher in the scattering as it was also observed for the Lorentzian filter. This is 

produced by the effect of the cavity resonance is very close to the non-linear regime 
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of the waveguide. The detailed spectrum near the peak in the scattering is shown in 

Figure 7.21 . 

 

Figure 7.21 Scattering peak and quality factor associated with the width of the 

scattering peak for each sample where scattering signal was observed. (a) Two rows 

separation Δs=0.05. (b)  Two rows separation Δs=0.10. Two rows separation 

Δs=0.25. Three rows separation Δs=0.05. 

 

Figure 7.21 shows a very symmetric shape for the scattering in (a) and (d) 

corresponding to Δs=0.05 for two and three rows. And the highest quality factor in 

the channel drop is 2550.  The non-symmetric shape in the scattering in (c) is 

produced by the coupling in the non-linear regime and the shape of spectrum is 

consisted with the estimated transmittance shape in this regime as is reported in 

literature [44] 
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D. Summary for the 240 GHz cavities. 

We have constructed and measured high Q cavities at 240 GHz. By tuning the L3 

cavity it is possible to reach Q values as high as Q=3800 for the Lorentzian filter 

coupling scheme as is measured with the scattering into free space by the cavity. 

However the Lorentzian scheme is not well suited for the search for even higher Q 

because the measurement depends of the amount of light coupled into the cavity and 

because in-plane coupling decrease more rapidly than the total loss of the cavity, the 

transmittance decreases very rapidly and therefore is very hard to measure. 

The channel drop is more suited for measuring high Q cavity because, to have 

and significant drop, we need to balance the coupling from the waveguide to the 

radiative loss. For a given radiative loss we can always equal or at least have the 

same order of magnitude loss by changing the distance between the cavity and the 

waveguide.  

  We have that the quality factor calculated from the width of the transmittance in 

both the Lorentzian filter and the channel drop could lead to errors if the cavity 

resonance is very close to the flat region of the waveguide dispersion relation. 
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8 Conclusions  

The experimental results reported in chapter 4 to 7 shows that indeed we 

succeeded in constructing a high Q cavity that operates at Terahertz frequencies. At 

1 THz we constructed and measured a photonic crystal cavity as high as Q=1020, 

which compared with the metallic waveguide photonic crystal cavity with a Q≈100 

provides a sharper resonance. We believe that the quality factor could reach higher Q 

and at room temperature will be limited by the free carrier absorption. 

 A cavity with a Q=1020 will enable the strong coupling between shallow donors 

in GaAs, therefore the next step has to be in the direction of fabricating the cavity 

using GaAs instead of silicon. The processing of GaAs is slightly more difficult that 

for silicon but it’s been already proven that high quality photonic crystal could be 

constructed using reactive ion etching. 

Also at 1 THz we constructed a transversal magnetic cavity intended to be 

coupled to a quantum post with Q as high as 1560. The quality factor of the cavity 

can be improved by carefully tuning the design of the cavity.  

In the 240 GHz regime we also were able to obtain encouraging results by 

constructing a cavity with quality factor near 4000, which is still below the value 

needed for it to have a strong coupling to a spin ensemble; however, the 

measurement was done at room temperature where the quality factor is severely 

restricted by free carrier absorption, an inconvenience not present at low 

temperature. Precisely, low temperatures are needed for it to be coupled to an 

ensemble of spins because only a low temperature could the spins be properly 
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polarized. The cavity with a Q=4000 is however very promising for spin resonance 

and we were looking to integrate this into the UCSB 240 ESR system. 

The future path of work is work into reducing the insertion loss of the structure, 

and also the waveguide needs to be modified in order to couple the cavity to the 

linear dispersion of the waveguide. As we have shown in chapter 7 the cavities we 

used are very close to the edge of the transmittance. To work in the linear dispersion 

region the holes next to the waveguide need to be made smaller in order to increase 

the effective index of the waveguide and therefore push to lower frequencies the 

dispersion of the waveguide. 

Photonic crystal structures are useful and very easy to integrate into more 

complex devices and they are now one more tool available to the THz community 

and science at large. 
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Appendix A. Eigen Value problem Maxwell equations. 

In this appendix we will present the Maxwell equations for a lossless non 

dispersive media as an eigenvalue problem. 

The set of Maxwell equations without sources are: 

 

∇ ∙ 𝐵 = 0 ;   ∇ × 𝐸 +
𝜕𝐵

𝜕𝑡
= 0 

∇ ∙ 𝐷 = 0 ;      ∇ × 𝐻 −
𝜕𝐷

𝜕𝑡
= 0 

(A.1)
  

If we consider that the displacement field (D) and induction field (B) are linear 

function of the electric field E and magnetic field H. That the media is a non-

magnetic and the solutions for the fields are harmonic, i.e.: 

 

𝐷 𝑟, 𝑡 = 𝜀0𝜀 𝑟 𝐸 𝑟, 𝑡 ;   𝐵 𝑟, 𝑡 = 𝜇 𝑟 𝐻(𝑟, 𝑡) 

𝜇 𝑟 = 𝜇0 

𝐸 𝑟, 𝑡 = 𝐸 𝑟 𝑒−𝑖𝜔𝑡 ;   𝐻 𝑟, 𝑡 = 𝐻(𝑟)𝑒−𝑖𝜔𝑡  

(A.2)
  

We have that the set of Maxwell’s equations for the filed can be simplifies as: 

 

∇ × 𝐸 − 𝑖𝜇0𝐻 = 0 

∇ × 𝐻 + 𝑖𝜔𝜀0𝜀(𝑟)𝐸 = 0 

(A.3)
  

From here its follows that: 

 

𝐸 =
𝑖

𝜔𝜀0𝜀(𝑟)
∇ × 𝐻 

∇ ×  
1

𝜀(𝑟)
∇ × 𝐻 −  

𝜔

𝑐
 

2

𝐻 = 0 

(A.4)
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Here we have that 𝑐 = 1  𝜇0𝜀0  . The equation for the magnetic field H, could be 

formulated as a eigenvalue by defining an operator Ω as: 

 Ω𝐻 = ∇ ×  
1

𝜀(𝑟)
∇ × H  

(A.5)
  

is an hermitic vector field operator.  With the above definition for Ω we have the 

equation for H can be written as: 

 Ω𝐻 −  
𝜔

𝑐
 

2

𝐻 = 0 
(A.6)

  

Equation A.6 is denominated “Mater equation”; The solution of the master equation 

that satisfies the transversality condition given by the divergence equation in A.1 are 

the normal modes of systems.   

In order to probe that Ω is a hermitic operator we first need a definition of  the inner 

product of two vector fields. We can use the canonical definition of inner product for 

a vectorial space.  

  𝐴, 𝐵 ≝  𝑑3𝑟 𝐴∗(𝑟) ∙ 𝐵(𝑟) 
(A.7)

  

Here A(r) and B(r) are three dimensional vector field and “ * ” denotes the complex 

conjugate and “ . ” is the normal dot product for two vectors. In order to prove that Ω 

is a Herminitan operator we need to prove that: 

  𝐴, Ω𝐵 =  Ω𝐴, 𝐵  
(A.8)

  

To verify this condition we only need to integrate by part twice: 

  𝐴, Ω𝐵 =  𝑑3𝑟𝐴∗ 𝑟 ∙ ∇ ×  
1

𝜀 𝑟 
∇ × 𝐵 𝑟   

(A.9)
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                        = 𝑑3𝑟 ∇ × 𝐴 𝑟  
∗
∙

1

𝜀 𝑟 
∇ × 𝐵 𝑟  

                       =  𝑑3𝑟  ∇ ×  
1

ε(r)
∇ × 𝐴 𝑟   

∗

∙ 𝐵 𝑟  

=  Ω𝐴, 𝐵  

Here we neglect the surface terms of the integral because either the fields vanish at 

the boundaries or they are periodical. In either case the surface integral vanishes at 

the boundaries. 

Because Ω is a Hermitian operator, it lets us reformulate Maxwell’s 

equations for a lossless, non dispersive, non magnetic, linear media in the absence of 

sources, into an eigenvalue problem for the magnetic field H. The different modes 

obtained are orthogonal and they form a basis from which a general solution for the 

Maxwell equations can be constructed.  

The present eigenvalue formulation is based on the magnetic field and not in 

the electric field, however once the solution for the magnetic field are known, the 

electric field can be calculated using (A.4).  
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Appendix B. Bloch Theorem. 

In this appendix we will present the photonic crystal concept. First we define the 

translation operation in the crystal; and show the translation commutes by the 

operator  Ω defined in the master equation for the magnetic field H. We show that 

the common solutions are indeed Bloch functions. Finally the concepts of  band 

diagram and reduce zone applied to photonic crystal are explain. 

A crystal is a periodic structure. As any periodic structure it will repeated itself,  

the length at which the structure is repeated is called lattice constant. For a three 

dimensional crystal there are three independent orientation and therefore three 

different repetition lengths. Let a1, a2 and a3 be three vector along each independent 

orientation and be they magnitude the lattice constant along each orientation.  

Lets know define the discrete translation operator as: 

 𝑇𝑅𝐴 𝑟 = 𝐴(𝑟 + 𝑅) 
(B.1)

  

Where R= la1 +pa2+qa3 , here l,p and are q integers; the eigenvalues of the 

translation operator are 𝑒−𝑖𝑘∙𝑅 with k in a vector in the reciprocal lattice space. 

From the concept of a crystal in which two points in the crystal are separated by 

any integer linear combination of the lattice vectors are equivalent is natural to 

consider that any operator that represents a physical quantity should be the same, i.e. 

the operator representing a physics quantities must commute with the translation 

operator.  
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In the language of operators if two operators commute it is possible to find a 

common representation for both operators. In particular we are interested in the 

operator defined by the master equation Ω; from its definition we know that because  

𝜀(𝑟) is periodic the operator Ω will commute with the translation operator. To 

actually prove that the translation operator TR commutes with the operator Ω we 

apply it over an arbitrary field H(r). 

𝑇𝑅Ω𝐻 𝑟 = 𝑇𝑅  ∇ ×
1

𝜀(𝑟)
∇ × 𝐻 𝑟 = 𝑇𝑅  ∇ ×  

1

𝜀(𝑟)
∇ × 𝐻 𝑟   

=  ∇R ×  
1

𝜀(𝑟 + 𝑅)
∇R × 𝐻 𝑟 + 𝑅   

=  ∇ ×  
1

𝜀(𝑟)
∇ × 𝐻 𝑟 + 𝑅   =  ∇ ×

1

𝜀(𝑟)
∇ × 𝐻 𝑟 + 𝑅 

= Ω𝑇𝑅𝐻 𝑟  

Since Ω and TR commute there hast to be a common set of eigenfuncions. Suppose  

that H(r) is a common eigenfunction. The condition for H(r) to be an eingenfunction 

of TR is: 

 𝑇𝑅𝐻 𝑟 = 𝐻 𝑟 + 𝑅 = 𝑒−𝑖𝑘𝑅𝐻 𝑟  

We can define a function 𝑢 𝑟 = 𝑒−𝑖𝑘𝑟 𝐻(𝑟) ; and the easily prove that 𝑢 𝑟  is a 

periodic function in R. 

𝑢 𝑟 + 𝑅 = 𝑒−𝑖𝑘 𝑟+𝑅 𝐻 𝑟 + 𝑅 = 𝑒−𝑖𝑘𝑅  𝑒−𝑖𝑘𝑟 𝐻 𝑟  = 𝑒−𝑖𝑘𝑅𝑢 𝑟  

  With the periodicity of  𝑢 𝑟  we can write a final form for the Bloch theorem as: 
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 𝐻𝑘 𝑟 = 𝑒𝑖𝑘𝑟 𝑢 𝑟  
(B.2)

  

Here we are explicitly setting the k dependence in H. The solutions to the operator Ω 

are planes waves modulated by a periodic function of the crystal; equation B.2 is the 

Bloch theorem and its function are called Bloch waves. 

Will be use the form of the Bloch function and substitute it inside the master 

equation A.6.  

Ω𝐻𝑘 𝑟 =  
𝜔 𝑘 

𝑐
 

2

𝐻𝑘 𝑟  

Inserting the expression B.2 for Hk , and the definition of Ω we have that: 

 ∇ ×
1

𝜀(𝑟)
∇ × 𝑒𝑖𝑘 ∙𝑟𝑢 𝑟 =  

𝜔 𝑘 

𝑐
 

2

𝑒𝑖𝑘 ∙𝑟𝑢 𝑟  

By Applying the vector operations on the left side of the equation and by factoring 

the exponential in both sides we have that the periodic function u(r) satisfies: 

  𝑖𝑘 + 𝛻 ×
1

𝜀 𝑟 
 𝑖𝑘 + 𝛻 × 𝑢 𝑟 =  

𝜔 𝑘 

𝑐
 

2

𝑢 𝑟  

Now defining the Hermitian operator Ωk as: 

 𝛺𝑘 𝑟 =   𝑖𝑘 + 𝛻 ×
1

𝜀 𝑟 
 𝑖𝑘 + 𝛻 ×  

(B.3)
  

The master equation for the periodic function u(r) is: 

 𝛺𝑘 𝑟 𝑢 𝑟 =  
𝜔 𝑘 

𝑐
 

2

𝑢 𝑟  
(B.4)

  

By using  the relation B.2, we find that the solutions of B.4 are the modes profile, 

provided that they satisfy  the tranversality condition inherited from A.2: 
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∇ ∙ 𝐻𝑘 = 0 

This condition could be written in terms of u(r) as: 

  𝑖𝑘 + ∇ 𝑢 𝑟 = 0 
(B.5)

  

A. Reduced Zone scheme 

The functional form of the Bloch functions defined in B.2 does not put any 

condition on k, however the periodicity of the function u(r) allows the restriction of 

the range of the k vector to the first Brillouin zone. 

Considering an arbitrary value of k, it is always possible to find a reciprocal 

lattice vector G  and a 𝑘′ vector in the first Brillouin zone such that: 

 𝑘 = 𝑘′ + 𝐺 
(B.6)

  

The Bloch function Hk(r) associate with k satisfies the following equations: 

𝐻𝑘 𝑟 = 𝑒𝑖𝑘𝑟 𝑢 𝑟  

𝛺𝑘 𝑟 𝑢 𝑟 =  
𝜔 𝑘 

𝑐
 

2

𝑢 𝑟  

Now let’s “fold” the k vector into the first Brilloin zone by using B.6:  

𝐻𝑘 𝑟 = 𝑒𝑖𝑘𝑟 𝑢 𝑟 = 𝑒𝑖 𝑘 ′ +𝐺 𝑟𝑢 𝑟 = 𝑒𝑖𝑘′𝑟  𝑒𝑖𝐺𝑟𝑢 𝑟  = 𝑒𝑖𝑘′𝑟𝑢′ 𝑟  

Where the function 𝑢′ 𝑟  defined as 𝑢′ 𝑟 ≡ 𝑒𝑖𝐺𝑟𝑢 𝑟  is a periodic function of the 

lattice. This property follows from: 

𝑢′ 𝑟 + 𝑅 = 𝑒𝑖𝐺 𝑟+𝑅 𝑢 𝑟 + 𝑅 = 𝑒𝑖𝐺𝑟𝑢 𝑟 = 𝑢′(𝑟) 

Let’s apply the operator Ωk′  over  𝑢′(𝑟)  using relation B.6 and the definition of 

𝑢′(𝑟). 
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𝛺𝑘 ′ 𝑢′ = 𝛺𝑘−𝐺𝑒𝑖𝐺𝑟𝑢 =  𝑖 𝑘 − 𝐺 + 𝛻 ×  
1

𝜀
 𝑖 𝑘 − 𝐺 + 𝛻 × 𝑒𝑖𝐺𝑟𝑢 

=  𝑖 𝑘 − 𝐺 + 𝛻 ×  
1

𝜀
 𝑖 𝑘 − 𝐺 × 𝑒𝑖𝐺𝑟𝑢 + 𝛻 × 𝑒𝑖𝐺𝑟𝑢  

=  𝑖 𝑘 − 𝐺 + 𝛻 ×  
1

𝜀
 𝑖 𝑘 − 𝐺 × 𝑒𝑖𝐺𝑟𝑢 + 𝑒𝑖𝐺𝑟  𝑖𝐺 + 𝛻 × 𝑢  

=  𝑖 𝑘 − 𝐺 + 𝛻 × 𝑒𝑖𝐺𝑟  
1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  

= 𝑖 𝑘 − 𝐺 × 𝑒𝑖𝐺𝑟  
1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  + 𝛻 × 𝑒𝑖𝐺𝑟  

1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  

=  𝑖 𝑘 − 𝐺 × 𝑒𝑖𝐺𝑟  
1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  + 𝑖𝑒𝑖𝐺𝑟𝐺 ×  

1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  

+ 𝑒𝑖𝐺𝑟𝛻 ×  
1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  = 𝑒𝑖𝐺𝑟  𝑖𝑘 + 𝛻 ×  

1

𝜀
  𝑖𝑘 + 𝛻 × 𝑢  

= 𝑒𝑖𝐺𝑟𝛺𝑘𝑢 = 𝑒𝑖𝐺𝑟  
𝜔 𝑘 

𝑐
 

2

𝑢 =  
𝜔 𝑘′ + 𝐺 

𝑐
 

2

𝑢′ 

From here we have that: 

 𝛺𝑘 ′ 𝑢′ 𝑟 =  
𝜔 𝑘′ + 𝐺 

𝑐
 

2

𝑢′ 𝑟  
(B.7)

  

i.e.  𝑢′(𝑟)  is solution of Ωk′  . From equations B.6 and B.7 we conclude that for any 

arbitrary k vector exist a k’ in the first Brillouin zone such that the solution to Ωk   is 

also solution of  Ωk′ . In conclusion the master equation B.4 only needs to be solved 

inside the First Brillouin zone. 

 Equation B.7 also shows that there are a discrete number of eigenvalues for 

the operator   Ωk , by ordering the eigenvalues we can introduce n as an index to 

distinguish between different modes for the same k value, therefore we can write the 
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frequencies solution as 𝜔𝑛𝑘 .  The operator   Ωk  is a function of k and inside the first 

Brillouin zone k can be varied continuously, therefore we can expect that 𝜔𝑛𝑘   also 

to change continuous as a function of k.  

It Is convenient to express the continuous variation of  𝜔𝑛𝑘  as a function of k 

explicitly as 𝜔𝑛𝑘 = 𝜔𝑛 𝑘 . The set of functions 𝜔𝑛 𝑘   is called a band structure. 

 

 

Figure B.1 The triangular lattice of holes; The reciprocal space with the first 

three zones highlighted. The high symmetry points are shown and the detail of the 

first Brillouin zone with its irreducible zone. 

 

 Figure B.1 shows the reciprocal space for the triangular lattice; the different 

Brillouin zones and the high symmetric point are shown in the reciprocal space. The 

underlying hexagonal symmetry is evident and it suggests that by rotating by 60 

degrees and using plane symmetries the calculation space could be further shrink to 



 

 127 

only consider the irreducible zone. The irreducible zone is the smallest set of k 

vector with which rotations, reflections and inversions can reproduce the entire first 

Brillouin zone and therefore the entire reciprocal space. 

In this appendix we have found that photonic crystal modes are subject to the 

proper symmetries of the crystal. The modes turns out to be Bloch functions which 

are plane waves modulated by a periodic function of the lattice. A general solution 

for the system is formed by a superposition of the Bloch modes, associated which 

each Bloch function there is a k vector, which by the sole use of the translation 

symmetries we only need to employ first Brillouin zone. Furthermore the use of 

rotations and reflection reduces the problem to only solve for k vectors in the 

irreducible zone.  
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Appendix C.  Mode Couple Theory. 

Couple mode theory is an approximation theory used to describe the interaction 

in a complex system that can be broken down into simpler idealized components. 

The solution to the overall systems is then expanded using the solutions or modes for 

each component. The amplitudes of each modes will depend on the particular set of 

rules obeyed by the overall systems, these rules will determine the couplings among 

each component in the system.    

A. Lorentzian Filter  

We will apply couple mode theory to our particular case of a complex system 

with a cavity and one or more waveguides. The localized modes for the cavity and 

the propagating modes for the waveguide will be the components of the overall 

system. The set of rules that the complex systems obeys are very general: Weak 

coupling, energy conservation, time reversal invariance, time invariance and 

linearity. The essential rule is weak coupling while the other four could be relaxed as 

we will see. 

We will first apply these ideas to the simple case of a filter. The filter consists of 

an input waveguide through which the light is injected into the cavity, the cavity, and 

the output waveguide that carries the filtered signal ( C.1). 

 In figure C.1 we have A proportional to the amplitude of the electromagnetic 

field of the cavity mode, in general it is a complex quantity and is chose such that the 

square of its magnitude (
2

A ) is the energy stored in the cavity. S1,2±  are the 
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complex quantities proportional to the propagating field in the waveguides such that  

2

2,1 S  are the energies fluxes. Here τ1,2 are the coupling factors between the cavity 

and the waveguides.  

 

 

Figure C.1 The Lorentzian filter system. The filter could break down into an input 

and output waveguide coupled trough a cavity. Mode couple theory solves the 

relation between the different scattering parameter and the coupling factor of the 

waveguides to the cavity. 

 

The temporal mode coupling theory equation for the field A in the cavity, with a 

first order approximation, can be written as: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏1
−

𝐴

𝜏2
+ 𝛼1𝑆1+ + 𝛼2𝑆2+ 

(C.1)
  

 𝑆1,2− = 𝛽1,2𝑆1,2+ + 𝛾1,2𝐴 
(C.2)

  

 

Here ω0 is the frequency mode of the cavity, α1,2 are the coupling factors from the 

waveguide that is going into the cavity, β1,2 are the reflection coefficients produced 
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by the cavity and γ1,2 the coupling factor from the cavity into the waveguide. All 

these quantities are not independents of each other.  

To derive the relation among different couplings we first consider that there is 

not incident flux going towards the cavity, i.e. S1,2+=0. The equation for the field A 

in the cavity and the fluxes S1,2-  are given by: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏1
−

𝐴

𝜏2
 

(C.3)
  

 𝑆1− = 𝛾1𝐴 
(C.4)

  

 𝑆2− = 𝛾2𝐴 
(C.5)

  

From  C.3 it is straightforward to derive that: 

𝑑𝐴∗𝐴

𝑑𝑡
= −2  

1

𝜏1
+

1

𝜏2
 𝐴∗𝐴 

Here A* is the complex conjugate of the field amplitude in the cavity. The quality 

factor is defined as 2π times the ratio of the time-average energy stored in the cavity 

to the energy loss per cycle[ ref jackson]. As a result the quality factor is given by: 

 
1

𝑄
=

2

𝜔0
 

1

𝜏1
+

1

𝜏2
  

(C.6)
  

 

Now consider the case where the right waveguide in figure C.1 is decoupled from 

the cavity, i.e. 1 𝜏2 = 𝛾2 = 0 . Applying energy conservation we have that the 

energy lost by the cavity is the energy of the flux moving out through the left 

waveguide. So we have that: 
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2

𝜏1
𝐴∗𝐴 =  𝛾1 

2𝐴∗𝐴 

We can chose an arbitrary phase for the reflection coefficient, such that the reflection 

coefficient real. Under this condition the coupling coefficient from the cavity into the 

waveguide is   𝛾1 =  2 𝜏1 . Using a similar argument for the case in which the left 

waveguide is decoupled from the cavity we have that  𝛾2 =  2 𝜏2  . These 

coefficients are correct to the first order even when both waveguides are coupled.  

The second order corrections are negligibly small due to the nature of the 

coefficients which are already small quantities. 

 

Figure C.2 Time reversal symmetry for the solution of the coupled system cavity-

waveguide. 

 

We have found that for the coupled cavity-waveguide system with no input 

flux of power, the field inside the cavity leaks into the waveguide and the field inside 

the cavity decays as 𝑒(−𝑖𝜔𝑡−𝑡/𝜏). We also found that the flux is related to the field 

amplitude inside the cavity as  𝑆1_ =  2 𝜏1 𝐴  with as 𝛾1 =  2 𝜏1  as shown in 
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figure C.2(a). If we apply the time reversal symmetry we find that for a flux coupling 

from the waveguide into the cavity the field inside the cavity grows as 𝑒(−𝑖𝜔𝑡 +𝑡/𝜏) 

and the field inside the cavity is related with the flux as 𝑆1+ =  2 𝜏1 𝐴 as shown in 

figure C.2(b).  

For this solution there is not output fluxes 𝑆1,2− = 0  and when this 

conditions are inserted into equations C.1 and  C.2  (here we decouple the right 

waveguide) we find that: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏1
+ 𝛼1𝑆1+ 

(C.7)
  

 0 = 𝛽1𝑆1+ + 𝛾1𝐴 
(C.8)

  

 

From equation C.8 with the solution from the time reversal we have that: 

𝑆1+ = −
𝛾1

𝛽1
𝐴 = −

 
2
𝜏1

𝛽1
𝐴 =  

2

𝜏1
𝐴 

From the last equation we immediately find that 𝛽 = −1. Inserting the 𝑆1+ =

 2 𝜏1 𝐴  into C.7 we have: 

𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏1
+ 𝛼1 

2

𝜏1
𝐴 

After some simple math we have that the change in energy of the cavity is given by: 

𝑑𝐴∗𝐴

𝑑𝑡
= −

2𝐴∗𝐴

𝜏1
+ 2𝛼1 

2

𝜏1
𝐴∗𝐴 
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Energy conservation requires that this increase in the energy in the cavity to be equal 

to the energy of the flux; we arrive to the following condition: 

−
2𝐴∗𝐴

𝜏1
+ 2𝛼1 

2

𝜏1
𝐴∗𝐴 =

2

𝜏1
𝐴∗𝐴 

From the last equation we found that 𝛼 =  
2

𝜏1
; We can realize the same analysis for 

the second waveguide and we will arrive to a similar results. Using the values found 

for the different couplings we arrive to the mode coupling equations: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏1
−

𝐴

𝜏2
+  

2

𝜏1
𝑆1+ +  

2

𝜏1
𝑆2+ 

(C.9)
  

 𝑆1,2− = −𝑆1,2+ +  
2

𝜏1,2
𝐴 

(C.10)
  

Let now analyze how the frequency filtering works. In a filter’s normal operation 

we have an incident signal that travels through the waveguide and then interacts with 

the cavity. The signal could be formed by a single frequency wave or it could have 

some frequency bandwidth. In either case only the frequencies component that lies in 

a certain frequency width around a cavity resonant mode are able to couple into the 

cavity; the remaining frequency components will be strongly reflected. The signal 

appearing in the output waveguide will therefore be filtered by showing only 

frequencies that were able to couple into the cavity. The amplitude of the 

transmission for each frequency component (frequency response) of the filter 

depends on the filter structure. We will show that for the Lorentzian filter shown in 
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figure C.1 the frequency response is precisely a Lorentzian centered on the cavity 

resonant and the width of the Lorentzian will correspond to the inverse of quality 

factor of the cavity multiply by its resonant frequency.  

We start with the couple mode theory equations C.9 and C.10  and considering 

that for normal filter operation there is no input energy from the output (left 

waveguide in figure C.1) waveguide, i.e 𝑆2+ = 0, and field amplitude inside the 

cavity are harmonics, i.e. 𝐴(𝑡, 𝜔) = 𝐴𝑒−𝑖𝜔𝑡 , under these conditions we have that the 

couple mode equations are: 

 −𝑖𝜔𝐴 = −𝑖𝜔0𝐴 −
𝐴

𝜏1
−

𝐴

𝜏2
+  

2

𝜏1
𝑆1+ 

(C.11)
  

 𝑆1− = −𝑆1+ +  
2

𝜏1
𝐴 

(C.12)
  

 𝑆2− =  
2

𝜏2
𝐴 

(C.13)
  

          From equation C.11 we have that:  

𝑆1+ =  
𝜏1

2
 𝑖 𝜔0 − 𝜔 +

1

𝜏1
+

1

𝜏2
 𝐴 

From the above equation the transmission coefficient is simple given by: 

𝑇 𝜔 =  
𝑆2−

𝑆1+
 

2

=   
 

2
𝜏2

 
𝜏1

2  𝑖 𝜔0 − 𝜔 +
1
𝜏1

+
1
𝜏2

 

  

2

=

4
𝜏1𝜏2

 𝜔0 − 𝜔 2 +  
1
𝜏1

+
1
𝜏2

 
2  
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Now using the definition for the quality factor C.6 the transmittance for a 

symmetric case ( 𝜏 = 𝜏1 = 𝜏2 ) can be rewritten as: 

 𝑇 𝜔 =

1
4𝑄2

 
𝜔0 − 𝜔

𝜔0
 

2

+
1

4𝑄2

 
(C.14)

  

This is a Lorentzian line center at the resonant frequency of the cavity. At 

resonance we have that: 

𝑇 𝜔0 = 1 

 

Figure C.3 Illustration of the full width at half maxima for a transmittance curve. 

The quality factor is given by the 𝑄 = 𝜔0 Γ ; where Γ is the full width at half 

maxima of the transmittance curve and ω0 is the frequency resonant of the cavity in 

this case the frequency corresponding to the peak in the transmittance. 

 

The frequency width of the peak in the transmittance also includes important 

information regarding the quality factor. The full width at half maxima (Γ) for the 

transmittance (as illustrated in figure C.3) is defined as the frequency width of the 
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curve take at half the maximal value in the transmittance.  At half maxima we 

require that both terms in the denominator in equation C.9 to be equal. i.e.: 

Γ

ω0
=

1

𝑄
 

Which turns out to be what we expected that the width of the Lorentzian is the 

inverse quality factor of the cavity times the resonant frequency. For the special 

symmetric case in which the coupling to both waveguides are equal we have that the 

transmittance at resonance is 100%. 

The reflection coefficient is given by: 

𝑅 𝜔 =  
𝑆1−

𝑆1+
 

2

=   
− 

𝜏1

2  𝑖 𝜔0 − 𝜔 +
1
𝜏1

+
1
𝜏2

 +  
2
𝜏2

 
𝜏1

2  𝑖 𝜔0 − 𝜔 +
1
𝜏1

+
1
𝜏2

 

  

2

=   
 𝑖 𝜔0 − 𝜔 +

1
𝜏1

+
1
𝜏2

 −  
1

𝜏2𝜏2

 𝑖 𝜔0 − 𝜔 +
1
𝜏1

+
1
𝜏2

 
  

2

=
 𝜔0 − 𝜔 2 +  

1
𝜏1

−
1
𝜏2

 
2

 𝜔0 − 𝜔 2 +  
1
𝜏1

+
1
𝜏2

 
2 

Again for the symmetric case the reflection simplifies to: 

𝑅 𝜔 =
 
𝜔0 − 𝜔

𝜔0
 

2

 
𝜔0 − 𝜔

𝜔0
 

2

+
1

4𝑄2

 

With the result that the reflection vanishes at resonance. In conclusion for a 

Lorentzian filter without losses the transmittance is a Lorentzian function whose 

frequency width is the inverse of the quality factor times the resonant frequency of 

the cavity and whose transmittance at resonance is 100% 
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B. Lorentzian Filter with losses 

In a more realistic situation we have a Lorentzian filter which has external losses 

such as radiative cavity losses and material absorption. We will focus on the former 

effect due that radiative loss is intrinsic to the design of the cavity. Material losses in 

principle are small
6
 and in can be incorporate to the calculation using the same 

formalism. 

 

Figure C.4 The Lorentzian filter with losses. The radiative loss is considered as 

an extra decay mechanism for the radiation confined inside the cavity. In absence of 

any other decay mechanism the quality factor of the cavity is given  𝑄 =
𝜔0𝜏𝑟

2
  this 

factor is also called Q-radiative or Qr. 

 

The schematics for a Lorentzian filter with loses is shown in figure C.4. The 

coupled equations are simply modified from the Lorentzian filter without loss by 

adding an extra channel for decay. For normal filtering operation we consider that 

there is no input flux from the right, i.e. 𝑆2+ = 0. Under these conditions and 

assuming harmonic fields the coupled equations are: 

                                                 
6
 This is not true for Terahertz photonic crystal at room temperature due to 

residual carrier absorption. However, this loss can be minimized by cooling down 

the samples. 
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 −𝑖𝜔 = −𝑖𝜔0𝐴 −
𝐴

𝜏1
−

𝐴

𝜏2
−

𝐴

𝜏𝑟
+  

2

𝜏1
𝑆1+ 

(C.15)
  

 𝑆1− = −𝑆1+ +  
2

𝜏1
𝐴 

(C.16)
  

 𝑆2− =  
2

𝜏2
𝐴 

(C.17)
  

 

The extra term in equation C.15  1 𝜏𝑟   is the radiative loss of the cavity and it 

represents the field decay in the absence of all the other dissipation mechanisms. The 

above equations are solved for the S parameter as a function of the field in the cavity 

as follows: 

𝑆1+ =  
𝜏1

2
 𝑖 𝜔0 − 𝜔 +  

1

𝜏1
+

1

𝜏2
+

1

𝜏𝑟
  𝐴 

𝑆2− =  
2

𝜏2
𝐴 

From here we have the transmission and reflection coefficients given by: 

𝑇 𝜔 =  
𝑆2−

𝑆1+
 

2

=

4
𝜏1𝜏2

 𝜔0 − 𝜔 2 +  
1
𝜏1

+
1
𝜏2

+
1
𝜏𝑟

 
2  

𝑅 𝜔 =  
𝑆1−

𝑆1+
 

2

=
 𝜔0 − 𝜔 2 +  −

1
𝜏1

+
1
𝜏2

+
1
𝜏𝑟

 
2

 𝜔0 − 𝜔 2 +  
1
𝜏1

+
1
𝜏2

+
1
𝜏𝑟

 
2  
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For a symmetric system we have that 𝜏𝜔 = 𝜏1 = 𝜏2 and defining QT, Qω and Qr 

as: 

1

𝑄𝑟
=

2

𝜔0𝜏𝑟
 

1

𝑄𝜔
=

4

𝜔0𝜏𝜔
 

1

𝑄𝑇
=

1

𝑄𝜔
+

1

𝑄𝑟
=

4

𝜔0𝜏𝜔
+

2

𝜔0𝜏𝑟
 

 

Here we have that QT is the quality factor of the cavity embedded in the 

waveguide; for the coupled equation C.15 with not fluxes 𝑆1,2+ = 0 the field decays 

with a decay constant given by:  

1

𝜏
=

2

𝜔0
 

2

𝜏𝜔
+

1

𝜏𝑟
  

With the definitions of the partial quality factor the transmittance can be 

rewritten as: 

 𝑇 𝜔 =

1
4𝑄𝜔

2

 
𝜔0 − 𝜔

𝜔0
 

2

+
1

4𝑄𝑇
2

 
(C.18)

  

 𝑅 𝜔 =
 
𝜔0 − 𝜔

𝜔0
 

2

+
1

4𝑄𝑟
2

 
𝜔0 − 𝜔

𝜔0
 

2

+
1

4𝑄𝑇
2

 
(C.19)

  

We have that T(ω) for the Lorentzian filter with loss is also a Lorentzian line 

and, we have that at resonance the transmittance is: 
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𝑇 𝜔0 =
𝑄𝑇

2

𝑄𝜔
2

 

The transmittance is not longer 100%. The full width at half maxima Γ requires that 

the both terms in denominator in equation C.18 to be equal. Under this condition we 

have that: 

Γ

𝜔0
=

1

𝑄𝑇
 

In conclusion we have that for a Lorentzian filter with losses the 

transmittance is a Lorentzian line with a full width give by equation C.18 and 

transmittance at resonance given by Eqn. C.18.   
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C. Channel drop configuration 

The channel drop configuration for waveguide-cavity system in one where the 

cavity is located next to the waveguide. Light traveling through the waveguide is 

evanescently coupled into the cavity; the transmittance there will be a “drop” in the 

signal with respect to a reference in which there is only a waveguide and no cavity. 

From the drop of the signal and the width of the drop is possible to obtain the total 

quality factor and the radiative quality factor of the cavity.  The configuration for 

this coupling scheme is shown in figure C.5. 

 

Figure C.5 Channel drop configuration 

 

For simplification here we consider that the system is symmetric and the 

observation planes for the S parameter are located at the same distance from the 

cavity. The first order coupled equations for the systems are the following. 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏𝜔
−

𝐴

𝜏𝑟
+ 𝛼1𝑆1+ + 𝛼2𝑆2+ 

(C.20)
  

 𝑆1,2− = 𝛽1,2𝑆2,1+ − 𝛾1,2𝐴 
(C.21)

  

 𝑆𝑟 = 𝜅𝐴 
(C.22)

  



 

 142 

By symmetry we have that β=β1=β2, α=α1=α2 and γ=γ1=γ2. Considering weak 

coupling we have that α,γ, and 1/τ are small. 

Our objective is to calculate the coupling factors α, β, and γ. To do this we first 

consider a cavity that is decoupled from the waveguide. Thus we have that 

1/τω=α=γ=0.   

The coupled equation simplifies to: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏𝑟
 

(C.23)
  

 𝑆1,2− = 𝛽1,2𝑆2,1+ 
(C.24)

  

 𝑆𝑟 = 𝜅𝐴 
(C.25)

  

 The energy conservation for systems require that energy leaking from the 

cavity to be equal to the flux escaping from the cavity, i.e. it requires that: 

−
𝑑𝐴∗𝐴

𝑑𝑡
=

2𝐴∗𝐴

𝜏𝑟
=  𝜅 2𝐴∗𝐴 =  𝑆𝑟  

2 

The above equation is obtained by multiplying equation C.14 by A
*
 and adding 

the complex conjugated of the result. From here we derive that: 

 𝜅 =  
2

𝜏𝑟
 

(C.26)
  

Also we have that the energy traveling to the waveguide is conserved therefore 

we have that: 

 𝛽 = −1 
(C.27)
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Now lets consider that the coupling is weak and there is not input flux, i.e. 

𝑆1,2+ = 0. The energy present in the cavity will decay into the waveguide and also 

radiated out of the slab as shown in figure C.6(a). 

 

Figure C.6 (a) Cavity decaying into the waveguide and frees space (b) Time 

reversal solution, here the power in the cavity is increasing by in coupling radiation.  

 

Here we have that the mode a couple equations reduce to: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏𝜔
−

𝐴

𝜏𝑟
 

(C.28)
  

 𝑆1,2− = −𝛾𝐴 
(C.29)

  

 𝑆𝑟 = 𝜅 
2

𝜏𝑟
𝐴 

(C.30)
  



 

 144 

Energy conservation requires that the energy lost by the cavity to be equal to the 

flux leaking into the waveguide plus the energy leaking out of the slab. Thus energy 

conservation requires: 

−
𝑑𝐴∗𝐴

𝑑𝑡
= 2  

1

𝜏𝜔
+

1

𝜏𝑟
 𝐴∗𝐴 = 2 𝛾 2𝐴∗𝐴 +

2

𝜏𝑟
𝐴∗𝐴 

From here we have that the coupling from the cavity into the waveguide is given by: 

 𝛾 =  
1

𝜏𝜔
 

(C.31)
  

Finally lets use the time reversal symmetry as shown in figure C.6 (b). In this case 

the direction of the flux is inverted i.e.  𝑆1,2− = 0, while the flux 𝑆𝑟   is now revered; 

it’s energy is coupling from the exterior into the cavity. The corresponding time 

reversal equations are: 

 −
𝑑𝐴

𝑑𝑡
= 𝑖𝜔0𝐴 −

𝐴

𝜏𝜔
−

𝐴

𝜏𝑟
− 𝛼𝑆1+ − 𝛼𝑆2+ 

(C.32)
  

 0 = −𝑆2,1+ −  
1

𝜏𝜔
𝐴 

(C.33)
  

 −𝑆𝑟 =  
2

𝜏𝑟
𝐴 

(C.34)
  

Energy conservation requires that the energy increase in the cavity to be equal to 

the energy coming from the fluxes. However, since the fluxes 𝑆1+ and 𝑆2+  traveling 

through the waveguide are equal in magnitude by symmetry and traveling in 

opposed direction, these two fluxes cancel each other and, the net flux in then just 

given by 𝑆𝑟 , from energy conservation we can derive that: 
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𝑑𝐴∗𝐴

𝑑𝑡
=  2  

1

𝜏𝜔
+

1

𝜏𝑟
 − 2𝛼 

1

𝜏𝜔
 𝐴∗𝐴 =

2

𝜏𝑟
𝐴∗𝐴 

From here we have that the coupling into the cavity is given by: 

 𝛼 =  
1

𝜏𝜔
 

(C.35)
  

Finally the couple mode theory for the channel drop is given by: 

 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏𝜔
−

𝐴

𝜏𝑟
+  

2

𝜏𝜔
𝑆1+ +  

2

𝜏𝜔
𝑆2+ 

(C.36)
  

 𝑆1,2− = 𝑆2,1+ −  
2

𝜏𝜔
𝐴 

(C.37)
  

 𝑆𝑟 =  
2

𝜏𝑟
𝐴 

(C.38)
  

 

Now lets show how the filtering actually work. Consider figure C.5, for the 

normal filtering operation we have that there is no input from the right, i.e 𝑆2+ = 0. 

Considering a harmonic field in the cavity the couple mode equation C.26 and C.27 

reduce to:  

 −𝑖𝜔 = −𝑖𝜔0𝐴 −
𝐴

𝜏𝜔
−

𝐴

𝜏𝑟
+  

1

𝜏𝜔
𝑆1+ 

(C.39)
  

 𝑆1− = − 
1

𝜏𝜔
𝐴 

(C.40)
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 𝑆2− = 𝑆1+ −  
1

𝜏𝜔
𝐴 

(C.41)
  

This system is easily solved,  for 𝑆1−, 𝑆2−  and 𝑆1+ as a function of A. 

𝑆1+ =  𝜏𝜔  𝑖 𝜔 − 𝜔0 +  
1

𝜏𝑟
+

1

𝜏𝜔
  𝐴 

𝑆1− = − 
1

𝜏𝜔
𝐴 

𝑆2− =  𝜏𝜔  𝑖 𝜔 − 𝜔0 +
1

𝜏𝑟
 𝐴 

From here the transmittance and reflection coefficient can be written as:  

 𝑇 𝜔 =  
𝑆2−

𝑆1+
 

2

=
 𝜔 − 𝜔0 

2 +
1

𝜏𝑟
2

 𝜔 − 𝜔0 2 +  
1
𝜏𝑟

+
1
𝜏𝜔

 
2 

(C.42)
  

 𝑅 𝜔 =  
𝑆2−

𝑆1+
 

2

=

1
𝜏𝜔

2

 𝜔 − 𝜔0 2 +  
1
𝜏𝑟

+
1
𝜏𝜔

 
2  

(C.43)
  

We can define the quality factors as the following: 

1

𝑄𝑟
=

2

𝜔0𝜏𝑟
 

1

𝑄𝜔
=

2

𝜔0𝜏𝜔
 

1

𝑄𝑇
=

1

𝑄𝑟
+

1

𝑄𝜔
=

2

𝜔0𝜏𝑟
+

2

𝜔0𝜏𝜔
 

The transmission and reflection coefficients can be rewritten as: 
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 𝑇 𝜔 =  
𝑆2−

𝑆1+
 

2

=

 
𝜔 − 𝜔0

𝜔0
 

2

+
1

4𝑄𝑟
2

 
𝜔 − 𝜔0

𝜔0
 

2

+
1

4𝑄𝑇
2

 
(C.44)

  

 𝑅 𝜔 =  
𝑆2−

𝑆1+
 

2

=

1

4𝑄𝜔
2

 
𝜔 − 𝜔0

𝜔0
 

2

+
1

4𝑄𝑇
2

 
(C.45)

  

 

The transmittance given by equation C.44 corresponds to a Lorentzian drop with 

respect to a reference line as shown in figure C.7. 

 

Figure C.7 Channel drop transmittance spectrum.  

 

We have that the Q of the cavity is obtained from the full width at half maxima 

of the drop by 𝑄𝑇 = 𝜔0/Γ , and that at resonance we have that: 

𝑇 𝜔0 =  
𝑄𝑇

𝑄𝑟
 

2
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The magnitude of the drop depends on the total QT factor of the cavity and Qr the 

radiative quality factor. To have a significant drop we require both to be in same 

order of magnitude. This is easily obtained even for very high QT since Q  could be 

increase faster than Qr by just increasing the distance between the waveguide and the 

cavity. These represent an advantage over the Lorentzian filter since the magnitude 

of peak in the transmittance involves the ratio of QT  and Q  in which the waveguide 

coupling decrease more quickly that the radiative loss and therefore yields a very 

low transmittance. In principle the channel drop scheme could be used to measure 

very high Q cavities up to the point that material loss became important. 
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Appendix D. Fabrication recipes. 

The fabrication process consists of a single lithography step following a reactive 

ion etching. The photoresist used in the lithography is changed for the different 

samples according to the thickness and the corresponding etching time. 

A. Carrier wafer coating 

This process is for the preparation of the carrier wafer used during the etching 

process, for this purpose we use a silicon wafer with a thickness of around 500 μm. 

For the wafer coating we use the Plasma Enhance Chemical Vapor Deposition 

(PECVD) Plasma-Therm model 790 system. This system uses a capacitively-

coupled RF plasma source produced between two parallel aluminum plates. The 

typical deposition rate is 400 A/min. at 300 mT pressure for a 250°C deposition.  

 

[1]   Wafer cleaning and drying takes two minutes in an ultra sound bath of 

Acetone, Isopropanol and Methanol and DI water. Followed with N2 dry 

and 5 minutes on the 110 C hot plate. 

[2] PECVD clean and coating of the chamber takes 10 minutes at 250°C. 

[3]  PECVD deposition of 2 or 6 microns depending of the thickness of the 

samples to construct. 
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B. Handling wafer preparation 

For the construction of samples with a thickness of 50 μm, due to the fragility, 

we used a handling wafer.  For the thicker samples this step is omitted. 

[1] We used a piece of silicon large enough for the samples and coated it 

following the procedure for the carrier wafer. This piece of coated silicon 

will be the handle wafer.  

[2] We clean and dry for two minutes in a ultra sound bath of Acetone, 

Isopropanol and Methanol and DI water. Followed with N2 dry and 5 

minutes in the 110 C hot plate. 

[3] Spin photoresist Az4110 on the handling wafer at 4k rpm for 30 seconds. 

[4] Put the sample onto the handle wafer and apply uniform pressure on the 

sample; I used a rectangular glass slide and a small weight (an empty 

small bottle, two or three ounces in volume, used to storage small 

quantities of photoresist).   

[5] Bake for about 5 to 10 minutes on the 95°C hot plate will help the sample 

stick to the handling wafer. 

 

C. Lithography process 

In this part of the process we use the handling wafer for the 50 μm thick samples 

or just the wafer for the thicker samples.  The specific process for each of the three 

samples sets are: 
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1. TE photonic crystal samples 1 THz 

[1] Cleaning and drying for two minutes in a ultra sound bath of Acetone, 

Isopropanol and Methanol and DI water. Followed with N2 dry and 5 

minutes in the 110 C hot plate. 

[2] Spining the AZ4210 photoresist at 4k rpm for 30 seconds. 

[3] Baking at 95°C for 60 seconds. 

[4] Edge removal
7
. 

[5] Expose for 15 seconds. 

[6] Develop in Az400K diluted 1:4 for 70 seconds or until inspected under 

the microscope that the features are clearly defined using a yellow light 

filter. 

2. TM photonic crystals sample 1 THz 

[1] Cleaning and drying for two minutes in an ultra sound bath of Acetone, 

Isopropanol and Methanol and DI water. Followed with N2 dry and 5 

minutes in the 110 C hot plate. 

[2] Due to the thickness of photoresist used for this set of samples we need to 

promote adherence; so we spin the HDMS at 3500 rpm for 30 seconds 

prior to the photoresist. 

[3] Spin-on SPR220-7.0 resist at 3500 rpm for 45. 

                                                 
7
 Edge removal is a optional step but in general leads to better results due to a 

better contact between the sample and the photomask. 
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[4]  Bake at 115°C for 120 seconds. 

[5] Edge removal. 

[6] Expose for 60 seconds. 

[7] Wait for 5 minutes to complete the reaction. 

[8] Develop MF701 for 70 seconds or until inspected under the microscope 

the features are clearly defined using a yellow light. 

 

3. TE photonic samples 240 GHz 

[1] Cleaning and drying for two minutes in a ultra sound bath of Acetone, 

Isopropanol and Methanol and DI water. Followed with N2 dry and 5 

minutes in the 110 C hot plate. 

[2] Spin AZ4330 photoresist at 4k rpm for 30 seconds. 

[3] Bake at 95°C for 60 seconds. 

[4] Edge removal. 

[5] Expose for 20 seconds. 

[6] Develop in Az400K diluted 1:4 for 90 seconds or until inspected under 

the microscope the features are clearly defined using a yellow light. 

D. Etching process 

The etching was done using a Silicon Deep Reactive Ion Etching system (SiRIE) 

Plasma-Therm 770 SLR. The system has an Inductively Coupled Plasma (ICP) coil 
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which also is coupled to an independent radio frequency supply (used to control the 

generated plasma). This system is dedicated to deep etching in silicon and is 

specially suited for the fabrication for Micro Electric Mechanical systems (MEMs). 

In our case our samples has a range of thickness from 50 μm to 380 μm and this 

systems produces high aspect ratio structures. The etching process consists of two 

steps: First, a polymer deposition for passivation using C4F8 in which there is no 

substrate bias, Second, is an etching cycle using a SF6 / Ar mixture with a substrate 

bias.   

We use Si02 coated silicon wafers as carrier wafers and photoresist patterned 

samples. The etch rate of silicon and Si2 is 200:1 while the etch rate ratio of the 

silicon photoresist is 80:1.  The etch rate is highly dependent on the exposed silicon; 

large open areas etches slower than small open area. Also high aspect ratio features 

also etch slower than more open areas.  

The first step of the process is a chamber clean out using a dedicated batch 

process called season process.  I usually use this step due to the recommendation of  

the person in charge of the etcher. This process is recommended if the machine has 

not been use in a couple of days. However it is recommended for consistency to have 

the chamber in the same condition every time samples are processed. It is common 

that more than one etch step is required however the cleaning only has to be done 

once at the beginning and not between each etch process. The season process is 

made with a blank silicon wafer. 
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Once the sample is ready for the etch process, it is mounted on the carrier wafer 

which is coated with Si02, the sample can be glued to the carrier either using a thin 

layer of photoresist or using Santovac. For convenience we used a few drop of 

Santovac while applying pressure on the sample. Here it is important to make sure 

that all excess oil is removed so that the wafer doesn’t get stuck to the robot arm or 

inside the camber. 

The time in the camber was calculated according to the thickness of the slab 

using the nominal etch rate of 2 μm per minute. The 50 μm samples spend in the 

chamber around 25 minutes. It could take up to several hours for the 380 μm samples 

at the nominal etch rate (~190 minutes). Its recommend to divide this time in several 

etch steps so the sample does not stay more than one hour inside the chamber. An 

estimate of the etch rate could be done by estimating the depth of the etch using a 

optical microscope because the etch rate in general is different from that of the 

nominal rate. In our case, most of the samples had a slower etch rate. 

E.  Unmount of the wafers  

This is the simplest but no less important part of the process. It is not uncommon 

to break the sample at this the very last part of the process.  

To remove the samples from the carrier wafer use Acetone and let it stays until it 

can be easily slid out of the wafer. For the case of the thin wafer that was glued to a 

handling wafer, an overnight bath in Acetone is needed. Cover the container with 

Aluminum foil to avoid evaporation.  
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F. Edge removal 

After the spinning step an excess of photoresist may accumulate on the edge of 

the samples. This can produce make the sample stick to the photomask or just not 

have a proper contact with the photomask, so is recommended to remove the edges. 

Here we have two techniques that are commonly practiced: 

Razor Blade 

[1] Use a razor blade to scrape off resist from edges of the sample before 

baking. 

[2] Soft-bake resist as described in the particular recipe. 

Overexpose and overdevelop 

[1] Expose the sample 1 mm from its edge for 3 times the normal exposure 

time.  Use aluminum foil or any other material to block or absorb the UV 

light. Develop using the corresponding developer for at least twice the 

recommended time. 

[2] Rinse with DI water and dry the sample with nitrogen. 

[3] Inspect with the microscope using yellow light to verify the edge are 

removed. If need it redo the process 
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Appendix E. Thin sample thickness measurement.   

We estimate the thickness of the slab by measuring FTIR transmission normal to 

the sample. We did this with either directly on sample in a region where there was no  

photonic crystal structure or with a part of the wafer  that was not processed. The 

FTIR transmittance  experiments were done in the near mid-infrared with a KBr 

(Potassium Bromide) beam splitter using a DTGS (Deuterated Triglycine Sulfate) 

detector. 

 

 

Figure E.1 The Fabry-Pérot interference is shown in the transmission normal to 

the wafer. The interference patters is a product of the finite thickness of the slab. 
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A typical transmission is shown in Figure E.1 where clearly resolved Fabry-Perot 

interferences fringes are observed when they are compared with the spectrum of the 

source. From the period of oscillation the thickness of the sample could be estimated. 

A. Photonic crystal slab samples 

  

 

Figure E.2 Normalized FTIR transmittance normal to the slab. (b) Linear fit of 

the peak in the transmittance, the calculated slop δ=0.9043 THz which corresponds a 

slab thickness of t=48.56 μm. 

 

Figure E.2 (a) shows the normalized transmittance for the photonic crystal slab 

used in chapter 4. In this transmittance we used as a reference the source spectrum 

scaled by an arbitrary unit. The peak on the oscillation is linearly fit as shown in 

Figure E.2(b).  The thickness of the slab is computed from the slope of the lines 
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using the formula 𝑡 = 𝑐 2𝑛δ ; here n=3.416 is the index of refraction of Silicon in 

the 1 THz region [47] and δ=0.9043 is the period of the oscillation (inverse of slop 

of the line in Figure E.2 (b)). With these values we found the thickness is 𝑡 =

48.56 ± 0.03  𝜇𝑚.  

B. High Q photonic crystal samples 

 

Figure E.3 (a) Normalized FTIR transmittance normal to the slab. (b) Linear fit 

of the peak in the transmittance, the calculated slop δ=0.9043 THz which correspond 

a slab thickness of t=48.56 μm. 

 

For the High Q photonic crystal cavity the transmittance perpendicular to the 

slab in shown in Figure E.3(a), where clearly resolved Fabry-Perot oscillation are 

observed. From the fit of the peak position as a function of the frequency in Figure 
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E.3(b), we found that the Fabry-Perot oscillations have a frequency period of  

Δ𝑓 = 0.9999 ± 0.0004 THz. The corresponding thickness from the fit is 𝑡 =

43.83 ± 0.02. The thickness measurement was done in a single point measure in the 

center of the wafer with a beam size of several millimeters. The flatness across the 

wafer is specified by the manufacturer to be 2 μm so we estimate the thickness of the 

wafer to be 𝑡 = 44 ± 2 μm. 
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Appendix F.  MPB and MEEP files. 

In the present appendix we show the files used for the simulation in thesis. 

In each file we explain briefly the parameter that can be override by a command line.  

There are several parameter that are common to all the structures, these parameters 

are: 

[1] r is the hole radius, for TE we used r=0.30 for TM we used r=0.465 

[2] thick is the thickness of the slab; we used the dimensionless 

experimental thickness, typically for TE t=0.6 and for TM t=2.80. 

[3] eps is the value for the dielectric constant for silicon t=11.68. 

[4] resolution is the number of point per unit cell, default value 32 for pc 

band calculations, a value of 20 for TE cavity resonances and 

transmittance for TE photonic crystal; and 32 for TM cavity and 

transmittance for TM photonic crystals. 

A. MPB : band diagram of a Photonic crystal 

Here we present the code used for calculating the band diagram structure for a 

photonic crystal. 

1. Specific parameters:      

[1] num-bands number of bands to calculate 

[2] k-interp number of point between two high symmetric used in the band 

diagram, the default value is 14. 
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[3] point  optional parameter  if only one point in the Brillouin Zone is 

desired. 

 

2. CTL file 

band.ctl -------------------------------------------------------------------------------------------- 

; Triangular lattice of air holes in dielectric 

; the parameter used for this simulations are  

 

; first, define the lattice vectors and k-points for a triangular lattice: 

(define-param sz 10) 

(set! geometry-lattice (make lattice (size 1 1 sz) 

                         (basis1 (/ (sqrt 3) 2) 0.5) 

                         (basis2 (/ (sqrt 3) 2) -0.5))) 

(define-param kz 0) ; use non-zero kz to consider vertical propagation 

(set! k-points (list (vector3 0 0 kz)          ; Gamma 

                     (vector3 0 0.5 kz)        ; M 

                     (vector3 (/ -3) (/ 3) kz) ; K 

                    (vector3 0 0 kz) ))       

 

; For simulating the whole diagram Gamma-M-K-Gamma 

; use the paramenter k-interp and interpolates between 

; the high symmetric point   

 

(define-param k-interp 14) 

(set! k-points (interpolate k-interp k-points)) 

 

 

; For runnin at specific point not the whole diagram  

; uncomment the following two expressions (and comment the two above)  

 

(define-param point (vector 3 0 0 0)) 

(set! k-points (list point)) 

 

 

; Here we define the geometry: 

 

(define-param eps 11.68) ; the dielectric constant of the background 

(define-param r 0.30) ; the hole radius 

(define-param thick 0.6); the thickness of the slab 

 

 

(set! geometry (append 

(list  (make block (size infinity infinity thick) (center 0 0 0)(material (make    

dielectric (epsilon eps) ))) ) 

(list (make cylinder (center 0) (material air) 

      (radius r) (height infinity))))) 

 

; here are the resolution and number of bands for the simulation 

(set-param! resolution 32) 

(set-param! num-bands 16) 

 

 

; here we select to run the te and tm bands if only one is desire 

; comment the the other one.  
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(if (= kz 0) 

    (begin 

      (run-te) 

 (run-tm)) 

    (run)) ; if kz != 0 there are no purely te and tm bands 

 

End band.ctl ---------------------------------------------------------------------------------- 

3. Examples 

[1] For calculating the band structure of  a photonic crystal slab with a hole 

radius r=0.30 and thickness 0.575. 

mpb r=0.30  thick=0.575 band.ctl  > band.out     

[2] For calculating the band structure of a photonic crystal slab with a hole 

radius r=0.465 and thickness 2.81.    

mpb r=0.465  thick=2.81 band.ctl  > band.out     

B. MEEP: Waveguide dispersion relation 

Here we present the code used for calculating the waveguide band diagram 

structure for a photonic crystal. The strategy used to calculate the waveguide 

dispersion, is to employ a pulse inside the optical gap of the photonic crystal 

structure, and look for the resonances for the waveguide structure employing the 

boundary conditions set by the Bloch function associate for each k vector from Γ to 

the zone boundary. 

            

1. Specific parameter 

[1] fcen   is the center frequency used for calculating the waveguide modes. 

[2] df   is the frequency width used for the excitation pulse. 
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[3] k-inter is the number of point to calculate the waveguide dispersion 

relation from the Γ point to the boundary zone. 

[4] point useful for running at a single reciprocal point. 

2. CTL file 

wgband.ctl ------------------------------------------------------------------------------------ 

; Some parameters to describe the geometry:        

(reset-meep); 

(define-param eps 11.682) ; dielectric constant of silicon                         

(define-param r 0.3) ; radius of holes                                          

                    

; The cell dimensions                                                            

(define-param sy (* 10 (sqrt 3))) 

(define-param dpml 1) ; PML thickness  

(define-param sx 1) ; size of cell in x direction         

(define-param sz 5) 

(define-param thick 0.575) 

(define-param av false) 

(set! eps-averaging? false) 

(set! geometry-lattice (make lattice (size sx sy sz))) 

(set-param! resolution 20) 

 

; parameter of the excitation pulse 

(define-param fcen 0.27) ; pulse center frequency 

(define-param df 0.1)  ; pulse width (in frequency) 

 

; array used for containing the photonic crystal 

(define pc (list )) 

 

; pc geometry 

 

;### center hole 

(do ((j  -4 (+ j 1))) (( > j 4))  

  (set! pc (append pc (list (make cylinder (center 0 (* j (sqrt 3)))(material air) 

(radius r) (height thick) ) )) )) 

;### side holes 

(do ((j -4 (+ j 1))) ((> j 3))  

(do ((i -1 (+ i 1))) ((> i 0 ))   

 (set! pc (append pc (list (make cylinder (center (+ i 0.5) (+ (/ (sqrt 3) 2) (* j (sqrt 

3))))(material air) (radius r) (height thick) ) )) ))) 

 

;### covering the center hole 

(set! pc (append pc (list (make cylinder (center 0 0 0)(material (make dielectric (epsilon eps))) 

(radius r) (height thick) ) )) ) 

 

 

(set! geometry (append    

   (list (make block (center 0 0) (size infinity infinity thick) (material 

(make dielectric (epsilon eps)))))  

   pc )) 

 

(set! pml-layers  

  (list  (make pml (direction Z) (thickness dpml)) 

   (make pml (direction Y) (thickness  dpml)))) 

 

 

; for TM band diagram use Ez instead of Hz  

(set! sources (list 

                (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Hz)    

                 (center 0.123 0 0) 
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                (size 0 0 thick)))) 

 

(set! symmetries 

      (list  

 (make mirror-sym (direction Y) (phase -1)) 

 (make mirror-sym (direction Z) (phase 1)))) 

 

; use a output directory 

(use-output-directory) 

 

;For calculating the dispersion relation from the gamma point to the Brillouin edge 

(define-param k-interp 24); iterpolation 

(run-k-points 600 (interpolate k-interp (list (vector3 0 0 0) (vector3 0.5 0 0)))) 

 

 

; if only point is requiere commend the two above expression and uncoomment  

; the next three commands, also change Hz by Ez for TM polarization 

;(define-param point 0) ;Brillouin boundary 

;(set-param! k-point (vector3 point 0 0)) 

;(run-sources+ 600 (harminv Hz (vector3 0.1234 0 0) fcen df))) 

 

End wgband.ctl ------------------------------------------------------------------------------ 

3. Examples 

[1] For calculating the waveguide band structure of a photonic crystal slab with a 

hole radius r=0.30 and thickness 0.575; the waveguide dispersion is located 

inside the gap near 0.27 (c/a). 

meep r=0.30  thick=0.575 fcen=0.27 df=0.2 wgband.ctl  > wgband.out     

[2] For calculating the waveguide band structure of a photonic crystal slab with a 

hole radius r=0.465 and thickness 2.81; the waveguide dispersion in 

locateded inside the gap near 0.46 (c/a)   

mpb r=0.465  thick=2.81 fcen=0.46 df=0.2 wgband.ctl  > wgband.out     

 

C. MEEP: Transmittance through the photonic crystal 

Here we present the code used for calculating the transmittance through the 

photonic crystal structure. We used several simulation using pulse with frequency 
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with a moderate frequency width instead doing a single simulation using a very 

broad frequency single pulse. 

user@pc: ~$  meep r=r0 thick=t eps=value resolution=value hds=disp l3cav.ctl  > l3cav.out            

1. Specific parameters 

[1] fcen   is the center frequency used for calculating the waveguide modes. 

[2] df   is the frequency width used for the excitation pulse. 

[3] nfreq is the number of frequencies used for calculating the transmittance. 

 

2. CTL files 

trans.ctl --------------------------------------------------------------------------------------- 

; Some parameters to describe the geometry:        

(reset-meep); 

(define-param eps 11.68) ; dielectric constant of waveguide                         

(define-param r 0.30) ; radius of holes                                          

 

; The cell dimensions                                                            

(define-param sy (* 1 (sqrt 3))) ;         

(define-param dpml 1) ; PML thickness  

(define-param sx 30) ; size of cell in x direction         

(define-param sz 5) 

(define-param thick 0.6) 

(define-param av false) 

(set! eps-averaging? av) 

(set! geometry-lattice (make lattice (size sx sy sz))) 

(set-param! resolution 20) 

 

;parameters of excitation pulse 

(define-param fcen 0.27) ; pulse center frequency 

(define-param df 0.1)  ; pulse width (in frequency) 

(define-param nfreq 1000) ; number of frequencies at which to compute flux 

 

; extra parameter of the structure 

(define-param nx 22) ; number of holes in the gamma-j orientation 

(define pc (list )) ; array used in the photonic crystal 

 

; geometry of the photonic crystal 

; ### center hole  

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (/ nx 2 )))  

 (set! pc (append pc (list (make cylinder (center i 0 0)(material air) (radius r) (height 

thick) ) )) )) 

 

;### side holes 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (- (/ nx 2 ) 1)))  

(set! pc (append pc (list (make cylinder (center (+ i 0.5) (* -0.5 (sqrt 3)))(material air) 

(radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center (+ i 0.5) (* 0.5 (sqrt 3)))(material air) 

(radius r) (height thick) ) )) )) 



 

 166 

 

 

(set! geometry (append    

   (list (make block (center 0 0) (size infinity infinity thick) (material 

(make dielectric (epsilon eps)))))  

   pc  )) 

 

(set! pml-layers  

  (list  (make pml (direction X) (thickness dpml)) 

    (make pml (direction Z) (thickness dpml)))) 

 

 

; used Ez if for TM photonic crystal 

(set! sources (list 

                (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Hz) 

                 (center -13 0 0) 

                 (size 0 sy thick))))  

 

(set! symmetries 

      (list  

 (make mirror-sym (direction Y) (phase -1)) 

 (make mirror-sym (direction Z) (phase 1)))) 

 

(define trans ; transmitted flux                                           

        (add-flux fcen df nfreq 

                  (make flux-region 

                    (center 13 0) (size 0 sy thick)  ))) 

 

(use-output-directory) 

 

(run-until 1000 ) 

(display-fluxes trans) ; print out the flux spectrum 

 

 

End trans.ctl --------------------------------------------------------------------------------- 

3. Examples 

[1] For calculating the transmittance trough the photonic crystal. For the TE pc 

with a hole radius r=0.30 and thickness 0.575; the transmittance between 

0.20(c/a) to 0.3(c/a) is calculate using the following command. 

 meep r=0.30  thick=0.575 fcen=0.25 df=0.2 trans.ctl  > trans.out     

[2] For a TM photonic crystal slab with a hole radius r=0.465 and thickness 2.81; 

the transmittance between 0.4(c/a) to 0.5 (c/a) is calculated using the 

following command.  

      meep r=0.465  thick=2.81 fcen=0.45 df=0.2 trans.ctl  > trans.out     
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D. MEEP: L3 Cavity resonance 

Here we present the code used for calculating the resonant modes of the L3 

cavity. The calculation can also include the material loss if desired. It also possible 

to calculate the resonant mode for cavity in which the inner hole in the ΓJ orientation 

next to the cavity is displaced from its original lattice position, this displacement 

tunes the quality factor of the cavity.  

1. Specific parameters 

[1] fcen   is the center frequency used for calculating the waveguide modes. 

[2] df   is the frequency width used for the excitation pulse. 

[3] hds  is the hole displacement from its original position, positive values 

increase the size of the cavity.  

[4] loss is the material loss that could be include in the calculation.  

2. CTL file 

l3cav.ctl--------------------------------------------------------------------------------------- 

; Some parameters to describe the geometry:        

(reset-meep); 

(define-param eps 11.68) ; dielectric constant of waveguide                         

(define-param r 0.30) ; radius of holes                                          

 

; The cell dimensions                                                            

(define-param sy (* 11 (sqrt 3))) ; size of cell in y direction about 5 mm with a=80mu        

(define-param dpml 1) ; PML thickness  

(define-param sx 25) ; size of cell in x direction         

(define-param sz 5) 

(define-param thick 0.6) 

(define-param av false) 

(set! eps-averaging? av) 

(define-param hds 0) ; hole displacement 

(set! geometry-lattice (make lattice (size sx (+ sy 2) sz))) 

 

(set-param! resolution 20) 

 

; pulse excitation parameters 

(define-param fcen 0.27) ; pulse center frequency 

(define-param df 0.1)  ; pulse width (in frequency) 
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; extra parameter used in the structure 

(define-param nx 22); number of holes in the gamma-j orientation 

(define pc (list )); array used for the pc structure 

 

; In case of calculating the q factor with losses 

(define-param loss 0) 

(define-param fc fcen); center frequency for the loss (use the same value for fcen) 

 

; geometry of the cavity 

 

;### center holes in the strcutre 

(do ((j  -5 (+ j 1))) (( > j 5)) 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (/ nx 2 )))   

  (set! pc (append pc (list (make cylinder (center i (* j (sqrt 3)))(material air) 

(radius r) (height thick) ) )) ))) 

 

;### holes displaced in the unit cell 

(do ((j -5 (+ j 1))) ((> j 4))  

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (- (/ nx 2 ) 1)))   

  (set! pc (append pc (list (make cylinder (center (+ i 0.5) (+ (/ (sqrt 3) 2) (* j 

(sqrt 3))))(material air) (radius r) (height thick) ) )) ))) 

 

;### covering the holes in the center of the structure 

(do ((i -2 (+ i 1))) ((> i 2 ))  

 (set! pc (append pc (list (make cylinder (center i 0)(material (make medium (epsilon eps) 

(D-conductivity (* 2 pi fc loss)))) (radius r) (height thick) ) )) )) 

 

;### making the holed displaced from the orginal positions 

(set! pc (append pc (list (make cylinder (center (- 0 2 hds)  0 0) (material air) (radius r) 

(height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center (+ 2 hds)  0 0) (material air) (radius r) 

(height thick) ) )) ) 

 

 

(set! geometry (append    

   (list (make block (center 0 0) (size infinity infinity thick) (material 

(make medium (epsilon eps)  (D-conductivity (* 2 pi fc loss)) ))))  

   pc )) 

 

(set! pml-layers  

  (list  (make pml (direction X) (thickness dpml)) 

    (make pml (direction Z) (thickness dpml)) 

   (make pml (direction Y) (thickness  dpml)))) 

 

 

(set! sources (list 

               (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Hz) 

                 (center 0.5 0 0) 

                 (size 0 0 0)) 

  (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Hz) 

                 (center -0.5 0 0) 

                 (size 0 0 0) (amplitude -1)) 

)) 

 

(set! symmetries 

      (list  

    (make mirror-sym (direction X) (phase 1)) 

     (make mirror-sym (direction Y) (phase -1)) 

  (make mirror-sym (direction Z) (phase 1)))) 

 

(use-output-directory) 

 

(run-sources+ 1000 

(after-sources 

(harminv Hz (vector3 0.5 0 0) fcen df) 

(harminv Hz (vector3 0.5 0.2 0.2) fcen df))) 

 

End l3cav.ctl---------------------------------------------------------------------------------- 
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3. Examples 

[1] For calculating the cavity resonance of the L3 cavity with a hole radius 

r=0.30 and thickness 0.6.  

 meep r=0.30  thick=0.6 fcen=0.27 df=0.2 l3cav.ctl  > l3cav.out     

[2] For calculating the L3 cavity with a hole radius r=0.3, thickness 0.575, with 

loss 0.001 and the near hole displace by 0.05 a.  

        meep r=0.30  thick=0.575 fcen=0.27 df=0.2 hds=0.05  loss=0.001 l3cav.ctl  > a.out     

E. MEEP: L3 Lorentzian filter 

Here we present the code used for calculating the resonant modes of the L3 

cavity inserted into a photonic crystal waveguide to form a Lorentzian filter. 

Material loss could be included and also the displacement of the inner hole 

delimiting the cavity inside the waveguide. 

1. Specific parameters 

[1] fcen   is the center frequency used for calculating the waveguide modes. 

[2] df   is the frequency width used for the excitation pulse. 

[3] hds  is the hole displacement from its original position, positive values 

increase the size of the cavity.  

[4] loss is the material loss that could be include in the calculation.  
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2. CTL file 

l3filter.ctl ---------------------------------------------------------------------------- 

; Some parameters to describe the geometry:        

(reset-meep); 

(define-param eps 11.68) ; dielectric constant of waveguide                         

(define-param r 0.30) ; radius of holes                                          

 

; The cell dimensions                                                            

(define-param sy (* 11 (sqrt 3))) ; size of cell in y direction about 5 mm with a=80mu        

(define-param dpml 1) ; PML thickness  

(define-param sx 25) ; size of cell in x direction         

(define-param sz 5) 

(define-param thick 0.6) 

(define-param av false) 

(set! eps-averaging? av) 

(define-param hds 0) ; hole displacement 

(set! geometry-lattice (make lattice (size sx (+ sy 2) sz))) 

 

(set-param! resolution 20) 

 

; pulse excitation parameters 

(define-param fcen 0.27) ; pulse center frequency 

(define-param df 0.1)  ; pulse width (in frequency) 

 

; extra parameter used in the structure 

(define-param nx 22); number of holes in the gamma-j orientation 

(define pc (list )); array used for the pc structure 

 

; In case of calculating the q factor with losses 

(define-param loss 0) 

(define-param fc fcen); center frequency for the loss (use the same value for fcen) 

 

; geometry of the cavity 

 

(do ((j  -5 (+ j 1))) (( > j 5)) 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (/ nx 2 )))   

  (set! pc (append pc (list (make cylinder (center i (* j (sqrt 3)))(material air) 

(radius r) (height thick) ) )) ))) 

 

(do ((j -5 (+ j 1))) ((> j 4))  

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (- (/ nx 2 ) 1)))  

  (set! pc (append pc (list (make cylinder (center (+ i 0.5) (+ (/ (sqrt 3) 2) (* j 

(sqrt 3))))(material air) (radius r) (height thick) ) )) ))) 

 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (/ nx 2 )))   

 (set! pc (append pc (list (make cylinder (center i 0)(material (make medium (epsilon eps) 

(D-conductivity (* 2 pi fc loss)))) (radius r) (height thick) ) )) )) 

 
 

(set! pc (append pc (list (make cylinder (center (- 0 2 hds)  0 0) (material air) (radius r) (height thick) ) )) 

) 

(set! pc (append pc (list (make cylinder (center (+ 2 hds)  0 0) (material air) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center 3 0 0) (material air) (radius r) (height thick) ))) ) 

(set! pc (append pc (list (make cylinder (center -3 0 0) (material air) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center 4 0 0) (material air) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center -4 0 0) (material air) (radius r) (height thick) ) )) ) 

; for four hole barrier unncomment the next two holes 

;(set! pc (append pc (list (make cylinder (center 5 0 0) (material air) (radius r) (height thick) ) )) ) 

;(set! pc (append pc (list (make cylinder (center -5 0 0) (material air) (radius r) (height thick) ) )) ) 

; for five hole barrier unncomment the next two holes 

;(set! pc (append pc (list (make cylinder (center 6 0 0) (material air) (radius r) (height thick) ) )) ) 

;(set! pc (append pc (list (make cylinder (center -6 0 0) (material air) (radius r) (height thick) ) )) ) 

; for six hole barrier unncomment the next two holes 

;(set! pc (append pc (list (make cylinder (center 7 0 0) (material air) (radius r) (height thick) ) )) ) 

;(set! pc (append pc (list (make cylinder (center -7 0 0) (material air) (radius r) (height thick) ) )) ) 

 

 

(set! geometry (append    

   (list (make block (center 0 0) (size infinity infinity thick) (material 

(make medium (epsilon eps)  (D-conductivity (* 2 pi fc loss)) ))))  

   pc )) 

 

(set! pml-layers  
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  (list  (make pml (direction X) (thickness dpml)) 

    (make pml (direction Z) (thickness dpml)) 

   (make pml (direction Y) (thickness  dpml)))) 

 

 

(set! sources (list 

              (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Hz) 

                 (center 0.5 0 0) 

                 (size 0 0 0)) 

  (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Hz) 

                 (center -0.5 0 0) 

                 (size 0 0 0) (amplitude -1)))) 

 

 

(set! symmetries 

      (list  

    (make mirror-sym (direction X) (phase 1)) 

     (make mirror-sym (direction Y) (phase -1)) 

  (make mirror-sym (direction Z) (phase 1)))) 

 

(use-output-directory) 

 

(run-sources+ 1000 

(after-sources 

(harminv Hz (vector3 0.5 0 0) fcen df) 

(harminv Hz (vector3 0.5 0.2 0.2) fcen df))) 

 

End l3filter.ctl ---------------------------------------------------------------------- 

3. Examples 

[1] For calculating the cavity resonance of the Lorentzian filter with a hole 

radius r=0.30 and thickness 0.6.  

 meep r=0.30  thick=0.6 fcen=0.27 df=0.2 l3filter.ctl  > l3filter.out     

[2] For calculating the Lorentzian filter with a hole radius r=0.3, thickness 

0.575, with loss 0.001 and the near hole displace by 0.05 a.  

        meep r=0.30  thick=0.575 fcen=0.27 df=0.2 hds=0.05  loss=0.001 l3filter.ctl  > filter.out     

F. MEEP: L2 Lorentzian filter 

Here we present the code used for calculating the resonant modes of the L2 

cavity inserted into a photonic crystal waveguide to form a Lorentzian filter. 
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1. Specific parameters 

[1] fcen   is the center frequency used for calculating the waveguide modes. 

[2] df   is the frequency width used for the excitation pulse. 

2. CTL file 

L2filter.ctl --------------------------------------------------------------------------- 

; Some parameters to describe the geometry:        

(reset-meep); 

(define-param eps 11.682) ; dielectric constant of waveguide                         

(define-param r 0.46) ; radius of holes                                          

                    

; The cell dimensions                                                            

(define-param sy (* 10 (sqrt 3))) 

(define-param dpml 1) ; PML thickness  

(define-param sx 22) ; size of cell in x direction         

(define-param sz 6) 

(define-param thick 2.72) 

(define-param av false) 

(set! eps-averaging? av) 

(set! geometry-lattice (make lattice (size sx sy sz))) 

(set-param! resolution 32) 

 

; excitation pulse parameters  

(define-param fcen 0.5) ; pulse center frequency 

(define-param df 0.2)  ; pulse width (in frequency) 

 

; extra parameters of the structure 

(define pc (list )) ;array for the pc crystal 

(define nx 18) ;number of holes along the gamma-j orientation 

 

; L2 cavity geometry 

 

;### center hole in the pc structure 

(do ((j  -4 (+ j 1))) (( > j 4)) 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (+ 1 (/ nx 2 ))))  

  (set! pc (append pc (list (make cylinder (center (- i 0.5) (* j (sqrt 3)))(material 

air) (radius r) (height thick) ) )) ))) 

 

;### side hole in the pc structure 

(do ((j -4 (+ j 1))) ((> j 3))  

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (/ nx 2 ) ))   

  (set! pc (append pc (list (make cylinder (center i (+ (/ (sqrt 3) 2) (* j (sqrt 

3))))(material air) (radius r) (height thick) ) )) ))) 

 

;### covering the holes to form the waveguide 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (+ (/ nx 2 ) 1)))  

 (set! pc (append pc (list (make cylinder (center (- i 0.5) 0) (material (make dielectric 

(epsilon eps))) (radius r) (height thick) ) )) )) 

 

;### holes delimiting the cavity inside the waveguide 
(set! pc (append pc (list (make cylinder (center 1.5 0) (material air) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center 2.5 0) (material air) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center -1.5 0) (material air) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center -2.5 0) (material air) (radius r) (height thick) ) )) ) 

 

 

(set! geometry (append 

   (list (make block (center 0 0) (size infinity infinity thick) (material 

(make dielectric (epsilon eps)))))  

   pc )) 

 

(set! pml-layers  

  (list  (make pml (direction X) (thickness dpml)) 
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    (make pml (direction Z) (thickness dpml)) 

   (make pml (direction Y) (thickness  dpml)))) 

 

(set! sources (list 

              (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Ez) 

                 (center 0.5 0 0) 

                (size 0 0 thick)) 

  (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                (component Ez) 

                 (center -0.5 0 0) 

                 (size 0 0 thick) (amplitude -1)))) 

 

 

 

(set! symmetries 

      (list  

     (make mirror-sym (direction X) (phase -1)) 

     (make mirror-sym (direction Y) (phase 1)) 

  (make mirror-sym (direction Z) (phase -1)))) 

 

(use-output-directory) 

 

(run-sources+ 600 

(after-sources 

(harminv Ez (vector3 0.3 0 0) fcen df) 

(harminv Ez (vector3 0.5 0 0) fcen df) 

(harminv Ez (vector3  0.25 0.23 0.25) fcen df))) 

 

3. Examples 

[1] For calculating the cavity resonance of the Lorentzian filter with a hole 

radius r=0.465 and thickness 2.81.  

 meep r=0.465  thick=0.2.8 fcen=0.46 df=0.1 L2filter.ctl  > l2filter.out     

G. MEEP: L3 Channel drop 

Here we present the code used for calculating the resonant modes of the L3 

cavity located next to the waveguide in the channel drop configuration. The 

calculation include displacement of the inner hole delimiting the cavity inside the 

waveguide and the distance from the waveguide 

1. Specific parameters 

[1] fcen   is the center frequency used for calculating the waveguide modes. 
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[2] df   is the frequency width used for the excitation pulse. 

[3] hds  is the hole displacement from its original position, positive values 

increase the size of the cavity.  

[4] lp is the distance from the waveguide; the default value is 0.5 

corresponding to two line of holes. For three holes the value correspond 

to lp=1.0, for four holes lp=1.5.  

2. CTL file 

cdrop.ctl ----------------------------- 

; Some parameters to describe the geometry:        

(reset-meep); 

(define-param eps 11.68) ; dielectric constant of waveguide                         

(define-param r 0.30) ; radius of holes                                          

 

; The cell dimensions                                                            

(define-param sy 22) ; size of cell in y direction about 5 mm with a=80mu        

(define-param dpml 1) ; PML thickness  

(define-param sx 22) ; size of cell in x direction         

(define-param sz 5) 

(define-param thick 0.6) 

(define-param av false) 

(set! eps-averaging? av) 

(set! geometry-lattice (make lattice (size sx sy sz))) 

(set-param! resolution 20) 

 

; pulse excitation parameters 

(define-param fcen 0.27) ; pulse center frequency 

(define-param df 0.1)  ; pulse width (in frequency) 

(define-param nx 22) ; number of holes along the gamma-j orientation 

 

; extra parameters of the structure 

(define pc (list )) 

(define-param lp 0.5) ;two lines of holes separation 

(define-param hds 0) 

 

; geometry of the crystal 

 

; center hole of the crystal 

(do ((j  -6 (+ j 1))) (( > j 6)) 

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (/ nx 2 )))  

  (set! pc (append pc (list (make cylinder (center i (* j (sqrt 3)))(material air) 

(radius r) (height thick) ) )) ))) 

 

; displaced hole in the crystal 

(do ((j 6 (+ j 1))) ((> j 5))  

(do ((i (* -1 (/ nx 2)) (+ i 1))) ((> i (- (/ nx 2 ) 1)))   

  (set! pc (append pc (list (make cylinder (center (+ i 0.5) (+ (/ (sqrt 3) 2) (* j 

(sqrt 3))))(material air) (radius r) (height thick) ) )) ))) 

 

 

; here we cover the holes to form the l3 cavity  

(set! pc (append pc (list (make cylinder (center 0  (sqrt 3)) (material (make dielectric (epsilon 

eps))) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center -1  (sqrt 3)) (material (make dielectric 

(epsilon eps))) (radius r) (height thick) ) )) ) 
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(set! pc (append pc (list (make cylinder (center 1  (sqrt 3)) (material (make dielectric (epsilon 

eps))) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center -2  (sqrt 3)) (material (make dielectric 

(epsilon eps))) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center 2  (sqrt 3)) (material (make dielectric (epsilon 

eps))) (radius r) (height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center (- 0 2 hds)  (sqrt 3)) (material air) (radius r) 

(height thick) ) )) ) 

(set! pc (append pc (list (make cylinder (center (+ 2 hds)  (sqrt 3)) (material air) (radius r) 

(height thick) ) )) ) 

 

; here we set the waveguide in the channel drop 

(set! pc (append pc (list (make block (center 0 (* ( - 0 lp) (sqrt 3)) ) (material (make 

dielectric (epsilon eps)))  (size infinity 0.8 thick)   )) )) 

 

(set! geometry (append    

   (list (make block (center 0 0) (size infinity infinity thick) (material 

(make dielectric (epsilon eps)))))  

   pc  )) 

 

(set! pml-layers  

  (list  (make pml (direction X) (thickness (* 2 dpml))) 

    (make pml (direction Z) (thickness dpml)) 

   (make pml (direction Y) (thickness  (* 2 dpml))))) 

 

(set! sources (list 

                (make source 

                 (src (make gaussian-src (frequency fcen) (fwidth df))) 

                 (component Ey) 

                 (center 0 (sqrt 3) 0) 

                 (size 0 0 0)))) 

 

(set! symmetries 

      (list  

   (make mirror-sym (direction X) (phase 1)) 

    ;(make mirror-sym (direction Y) (phase -1)) 

  (make mirror-sym (direction Z) (phase 1)))) 

 

(use-output-directory) 

 

(run-sources+ 600 

(after-sources 

(harminv Ey (vector3 0 (sqrt 3) 0) fcen df) 

(harminv Hz (vector3 1.3 (+ 0.2 (sqrt 3)) 0.2) fcen df))) 

 

End cdrop.ctl --------------------------------------------------------------------------------- 

3. Examples 

[1] For calculating the cavity resonance of the cannel drop, for a hole radius 

r=0.30, thickness 0.6 located two lines from the waveguide   

 meep r=0.30  thick=0.6 fcen=0.27 df=0.2 lp=0.5 cdrop.ctl  > cdrop.out     

[2] For calculating the cavity resonance of the channel drop, for a hole 

radius r=0.3, thickness 0.575, three lines from the waveguide and the 

near hole displace by 0.05 a.  

        meep r=0.30  thick=0.575 fcen=0.27 df=0.2 hds=0.05  loss=0.001 l3filter.ctl  > filter.out 
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Appendix G. Sample inventory. 

The samples measured in this thesis are the following ones: 

A. Photonic crystal gap 1.4 THz 

Only two samples labeled PC-Jorientation 40-50 cm
-1

. 

B. TE Photonic crystal waveguide and cavities at 1 THz 

Lattice constant Waveguide Lorentzian filter Comments: 

76 L76R30WG L76R30H2 Published 

78 L78R30WG L78R30H2 Not published 

80 L80R30WG L80R30H2 Published 

78 78WG 78H2 Not published 

 

C. TM Photonic crystal waveguide and cavities at 1 THz 

Lattice constant Lorentzian filter Comments: 

150 150H2  

145 145H2 Not published 

140 150H2  

135 150H2  
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D. TE 240 Waveguide and Photonic crystal cavity 

1. Direct coupling scheme 

Displacement Label Comments 

0.00 L3H3  

0.05 L3H3S05  

0.10 L3H3S10  

0.15 L3H3S15  

0.20 L3H3S20  

0.25 L3H3S25  

0.00 L3H2  

0.00 L3H4  

N/A WGR28 Waveguide with r=0.28 

N/A WGR30 Waveguide with r=0.30 

 

2. Channel drop coupling 

Displacement Two hole  Three holes Comments 

0.00 N2DS00 N3DS00  

0.05 N2DS05 N3DS05  

0.10 N2DS10 N3DS10  

0.15 N2DS15 N3DS15  

0.20 N2DS20 N3DS20  

0.25 N2DS25 N3DS25  

N/A WG  Waveguide 
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