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Abstract

Nonlinear and Nonperturbative Dynamics in Quantum Wells
by
Bryan Galdrikian

Quantum well studies at the Free Electron Laser facility at the University of Cal-
ifornia, Santa Barbara, motivate a program for the theoretical study of the interac-
tion of intense radiation with electrons in semiconductor heterostructures. Confined
in one dimension, and free in the other two, electrons in quantum wells have their
energies quantized in parabolic subbands. When laser light is coupled into the well,
with polarization in the confinement direction, the matter-radiation system can be
approximated as a one dimensional man-made “atom.” The optical properties of
this system are studied here, both in the perturbative and nonperturbative (weak
and strong laser field) regimes.

Whereas the classical analog of a driven quantum well has a phase-space which
is typically a mixture of resonances and chaotic trajectories (Hamiltonian chaos),
the quantum system may be characterized by a time-dependent basis set known
as Floquet states. These states’ coarse-grained Wigner distributions are ghostly
likenesses of the classical phase space structures. The nonintegrability of the classi-
cally chaotic system manifests itself quantum mechanically with the appearance of
avoided crossings in the spectrum of eigenvalues associated with the Floquet states.
Avoided crossings correspond to multi-photon resonances and harmonic generation.

The presence of electron-electron interactions provides interesting behavior as
well, introducing nonlinearities into the dynamics (in the mean-field approxima-
tion). In the weak field regime, perturbation theory predicts an optical response
function whose poles do not reside at the intersubband energy spacings, due to
dressing of the field by the electron-electron interactions. Dressed optical response
formulae are derived in this work up to second order. In the strong field regime,
perturbation theory breaks down. However, one may directly integrate the quantum
equations of motion to find a strong field steady-state response, if there is dissipa-
tion present. When dissipation can be neglected, the dynamics become sensitive
to initial conditions, and the nonlinearity due to electron-electron interactions may
even lead to chaos.
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Chapter 1

Introduction

What is essential is invisible to the eye.

- Antoine de Saint-Ezupéry

This work is an attempt to understand the interaction of intense radiation with
matter, in particular the response of quantum systems when subjected to a powerful
source of electro-magnetic radiation. Most of the work has been done in direct con-
junction with experiments performed at the UC Santa Barbara Free Electron Laser
(FEL) on doped quantum well structures. Quantum wells are layered semiconductor
devices, which tend to confine conduction-band electrons in a plane. The confine-
ment quantizes the allowed energies of the electrons into subbands. Transitions
between subbands may be probed optically, and occur typically in the Far-Infrared
(FIR), or about fw ~ 5-50 meV. The UCSB FEL at present is continuously tunable
in the fiw = 0.5-15 meV range. Thus, it can probe inter-subband transitions in
wider quantum wells (on the order of hundreds of Angstroms).

Experiments are being carried out on quantum well structures at the UCSB FEL

by several groups, including those headed by Mark Sherwin, Elizabeth Gwinn, and S.

1




2 CHAPTER 1. INTRODUCTION

James Allen. These experiments include measurements optical absorption, harmonic
generation, and optical rectification. Keith Craig has had success in measuring
intensity-dependent absorption spectra in a quantum well, while James N. Heyman
has measured second and third harmonic generation, as well as optical rectification
(a second-order static displacement of the electrons) in a quantum well. Quantum
well structures have been found to have extremely strong harmonic responses, as

much as 5 or 6 orders of magnitude higher than the bulk semiconductor.

The quantum wells studied are grown, atomic layer by atomic layer, with a
method called Molecular Beam Epitaxy (MBE). This method allows one to specify
the chemical makeup of each atomic layer, thus providing control over the band
structure of the solid in the direction of growth. (From now on, the growth direction
will be labeled z, so the atomic layers just mentioned lie in the £ — y plane.) In
the wells studied, each atomic layer consisted of Al;Ga;_,As, with 2 varying from
0 to 0.3 as a function of z. Figure 1.1 schematically depicts such a quantum well
structure. Alp3GagrAs has a conduction band energy which is about 250 meV
higher than GaAs, providing that much control of the conduction band profile. The
band structure is approximately uniform in the £ — y plane, so that electrons are
free to move in the plane. This gives us an effectively one-dimensional system, since
translational symmetry in the plane allows us to ignore, to a good approximation,
the dynamics in the plane’

In order to populate the quantum well with electrons, Silicon doping regions are
laid down during the growth process, usually hundreds of atomic layers from the

region of the well. Electrons donated by the Silicon “fall” into the low-potential

'The present accuracy of MBE allows control of the growth with an error of about one atomic

layer.



Al Gal_ As
* x GaAs X

Figure 1.1: Schematic of the quantum well.

region of the well. The electron sheet density in the well, along with the profile
of the well itself, are all able to be rather faithfully supplied by the growers, given
the specification of the well designer. Thus, we have what seems a theorist’s dream
come true, that is a simple one-dimensional quantum system, which may be probed
by a highly tunable source of long-wavelength radiation. Such systems are not just

for textbooks any more!

Of course, these systems are actually three-dimensional, and consist of a large
number of interacting electrons. They are also dissipative, due to inelastic scattering
of the electrons with phonons in the solid. The dissipation may be reduced by study-
ing transitions below the Longitudinal-Optical phonon energy, which for GaAs is 36
meV, thus eliminating the possibility of exciting these phonons. (Acoustic phonons
will still be excited, as their energies range down to zero.) The electron-electron
interaction must be accounted for in order to accurately model wider quantum

wells. This interaction may be treated in a variety of ways, and in this work the



4 CHAPTER 1. INTRODUCTION

electron-electron interactions will be treated by the mean-field approach, that is,
using an effective potential which approximates the effect of all other electrons on a
single typical electron [29]. In this approximation, we will see that the effect of the
electron-electron interaction can range from trivial, as in the case of linear response,
where the effect is a shift of the optical absorption frequency, to spectacular in the
case of strongly-driven systems, which can give rise to chaotic dynamics in the well.

This work proceeds in stages, modeling the quantum well more accurately with
each stage. First we will look at classical model of a quantum well structure. We
will see that classically, a single electron in a quantum well will exhibit chaotic
motion when driven strongly. This interesting classical behavior has quantum man-
ifestations, which will be explored in the second section. There we will examine the
quantum manifestations of classical chaos in simple one-dimensional systems, and
after that treat the effects of dissipation and electron-electron interactions. We will
then be able to derive the perturbative response of doped quantum wells, and we
will derive many-body second-order response functions which are used to model the
experiments of Heyman et al.

Throughout this work, we will take advantage of the fact that the wavelength of
the driving radiation is much larger than the system being studied, so that a good
approximation to the effect of the radiation is the Electric Dipole Approximation (for

a derivation, see [31]), which enters the Hamiltonian as a time-dependent potential:
Vi(z,t) = e£zsinwt, (1.1)

where e is the electron charge, and £ and w are the magnitude and frequency of the
electric field. The effective potential seen by a single electron, due to the presence

of other electrons, will be denoted as v(z,t). These two potentials, along with the



conduction band profile in the z direction, W(z), comprise the total potential seen
by a single electron (see figure 1.2, for example). Thus the general Hamiltonian

being studied is

H(py )= 525+ W(a) + Vils,8) + 0(3,1), (12)

where p, is the conjugate momentum to the codrdinate z, and m* is the effective
mass of the electron, in the z direction. Again, we have ignored the dynamics in
the z — y plane, assuming they separate trivially from the z-coérdinate, owing to
translational symmetry in the plane.

A large body of work in the physics literature is devoted to calculating per-
turbative response functions of driven systems such as the one described by the
Hamiltonian 1.2. These response functions are valid when the driving field is rela-

tively weak, i.e. when
efa € hw, (1.3)
where a is a relevant length scale in the system. In general, any observable O can
be used to define the response (O(t)) = (¥(£)|0]¥(t)), where |3(2)) is the solution
to Schrédinger’s equation
i %:9 = H(t)(2). (1.4)
(Here we have suppressed the z- and p,-dependence, making the equation basis
independent.) In order to calculate a unique and well-defined response function, it
is the usual convention to ramp up the driving field (1.1) slowly, by introducing an
exponential envelope,
Vi(z,t) = e£ze™ sinwt, (1.5)
and then taking the limit # — 0 in deriving the response,

0(t) = lim ($(1)OI())
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E(i(z) 100's of A
———>

~250 meV

‘l- Si Si
- Z
Al 3Gag 7As GaAs Aly 3Gag 7As
Ec(z)+u(z)
P Z

Figure 1.2: A simple square well, empty (top) and full (bottom). The well is popu-

lated by electrons from the silicon donors outside of the well.



This has the effect of eliminating all “transients” from the system’s response, thus
producing what we would expect to be the system’s long-time behavior.

As we will see in chapter 3, there are cases where no such well-defined, unique
response function exists, when (1.3) is not true. For strongly driven systems, the
behavior of |¢(t)) (and any observable derived from it) may depend on the past
history of the system (that is, what the driving on the system was before equation 1.1
holds). The past history, for example whether or not the driving field was turned on
slowly, or suddenly switched on, can have a permanent effect on the behavior of the
system even in the long-time limit. One might think that this history dependence
can be eliminated by ramping up the field in a well-defined way, as in equation 1.5,
but this will not work for a strongly driven system in general. In some cases, when

dissipation may be neglected, the limit

lim |3(2))

n—0

does not even exist! We will explore examples of such history-dependence in chap-
ter 6, and the interesting effect of many-body interactions, which can give the system
a sensifive dependence to its history. We will also see that when dissipation is impor-
tant, as it is in an actual quantum well, much of this history-dependence disappears,
giving way to more robust behavior as one might expect in a real system.

We will now embark on a journey through the physics of the systems described
by (1.2), from the classical regime to quantum, and from the very simple to the very

complex.
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Chapter 2

The Classical Picture

The dynamics of a dissipationless, driven classical particle in a potential well can be
divided into two classes: regular and chaotic [15]. The chaotic regime is distinguished
from the regular by sensitive dependence on initial conditions, that is, two nearby
initial conditions will quickly diverge from each other. Consider now such a system,
for example a square [30, 9, 33] or triangular [5] well. (We exclude the few integrable
systems, where solutions to the time-evolution may be written in closed form.) With
no driving, the classical phase space consists of invariant surfaces (time-evolution
maps an invariant surface to itself) of constant energy. As the driving amplitude
is turned up, many of these surfaces remain, but are distorted, and are now named
“Kolmogorov-Arnold-Moser” (KAM) invariant surfaces. Resonances occur, between
the particle’s natural frequency in its potential and the drive frequency. Resonances
are closed trajectories, periodic with some multiple of the drive period. If a resonance
is “stable,”® then nearby trajectories circle about the resonant trajectory. This
creates an “island” of regular motion. If the resonance is “unstable,” then nearly all

nearby trajectories diverge exponentially from the resonance. “Chaotic” homoclinic¢

!Stable here means marginally stable, as this terminology is conventional for Hamiltonian (i.e.

dissipationless) systems.



10 CHAPTER 2. THE CLASSICAL PICTURE

tangles surround the unstable resonances, for any amount of drive. As the drive is
increased, stable trajectories turn unstable, and the size of the chaotic regime grows.
The growth is accompanied by the destruction of KAM surfaces, and thus regular
motion is systematically replaced by chaotic motion with increased driving. The
qualitative analysis is similar for all the non-integrable wells whose dynamics can be
reduced to a twist map?. These wells are generic, in contrast to integrable wells such
as parabolic wells, which are exceptional. We chose to work with the square well
because it is analytically simple and experimentally easy to make. In the case of the
square well, after the last of the main stable resonances goes unstable, the phase
space consists of nearly entirely chaotic trajectories at low momentum, bounded by

KAM surfaces beyond some particular momentum value.

In this chapter we will model the square well, scaling the system to have only one
free parameter for simplicity, which we have chosen to be the scaled drive amplitude.
The sequential destruction of the KAM surfaces between the resonances as drive
amplitude is increased gives rise to non-trivial stochastic behavior as a function of
drive amplitude. In the driven square well, a particle with low momentum lies in a
chaotic regime, and may explore low momenta, bounded by KAM surfaces at some
point. As the drive is increased, fewer resonances are separated by KAM surfaces,
and the energy obtainable by the system sharply increases when the last KAM
surface disappears between two resonances. This signature of chaotic transport will
be seen in a simulation performed in this section. To predict when KAM surfaces

disappear, we will compare the Chirikov resonance overlap criterion [15] with a

?j.c., wells for which, in the absence of driving, the oscillation frequency changes with the
amplitude of oscillation. Piecewise parabolic wells have no twist, and analysis is fundamentally

different in this case [37).
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criterion introduced by J. M. Greene [23]. The latter criterion requires a calculation
of the stability of fixed points near the KAM surface in question. We use this
criterion crudely and only consider the main =n : 1 fixed points, but the results are
considerably better than Chirikov’s method. The exact stability calculations will be

derived in this chapter.

2.1 The Hamiltonian and Poincaré Section

We begin with the Hamiltonian (1.2), neglecting the electron-electron interactions

(v(z,t) = 0), for an electron in a 1-D infinite square potential of half-width a:

2 0, zl<a
H(p:,2,t) = P,‘ + W(z) + e£zsin(wt), W(z) = Izl

2m

0o, |Z] =2a

We shall put the Hamiltonian into unitless form with the following substitutions:
T=wt, g=alz, X=(m'wia)let, (2.1)

It follows that momentum is scaled by the quantity m*wa, and energy by the quan-

tity m*w?a®. Thus, defining
p= (m'wa)'p,,  h(p,q,7) = (m"w’a®) T H(p,, 2,1),
we arrive at the unitless Hamiltonian
h(p,q,7) = 3p* + W(g) + Agsin(r). (2.2)
From (2.2), the equation of motion is integrated to give the trajectory

g(7) = A[sin(7) — sin(70)] + [po — A cos(70))(T — 70) + Q- (2.3)
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(We define go = g(7o) and po = p(70).) To account for the presence of the walls,
a root finder is used to find when the electron hits either wall (i.e., 7 such that
q(7) = £1). This value of 7 is then taken as 7p, the momentum reversed, and the
process is iterated. Viewed this way, it is the boundary conditions which give rise
to the system’s non-integrability. Alternatively, one can describe the potential as
W(q) = ¢*", where n is an integer. For n > 1, the system is nonintegrable, and we

retrieve our system in the limit as n — oo.

As described previously, nonintegrable Hamiltonian systems consist of two types
of trajectories, regular and chaotic. Typically, there are islands of regular motion
within a chaotic region of phase space. These are called resonance islands, because
they consist of regular trajectories circulating around a (stable) closed trajectory.
Closed trajectories with period nT'/m, where T is the period of the drive, and n and

m are integers, are called n : m resonances.

These trajectories can be seen clearly if one views a cross-section of them in
phase space, otherwise known as a Poincaré section. We will define Poincaré section
to mean a sampling of the trajectories once every period of drive. Therefore an
nth order (period nT') resonance intersects the Poincaré section in n places. By the
Poincaré map, we mean an operator P which evolves an initial condition through
one cycle of drive, along its trajectory as defined by the Hamiltonian flow. Thus an
nt® order resonance corresponds to an initial condition being mapped to n different
locations under P, before returning to its original value.

A typical Poincaré section for the system described by the Hamiltonian (2.2)
with drive amplitude A = 0.05 is shown in figure 2.1. In this figure, several initial
conditions were chosen so that the phase space structure is clear. The subsequent

trajectories are sampled at 7 =3, 7. The 1 : 1 resonance is clearly visible, surrounded
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by a large stable island in the upper center of the figure, and wrapping around to
the bottom of the figure. (On the walls of the box, at ¢ = +1, trajectories at
+p and —p continuously join together, since the particle reflects of of the walls.)
Two 2 : 1 resonances can be seen, as pairs of islands around their period two fixed
points. They lie at lower momentum than the 1 : 1, surrounded by the chaotic ocean
formed by the tangles associated with all of unstable fixed points. All other n : 1
resonances have become unstable at this value of A. Some n : m resonance islands
are also visible in the figure. One can make out the 1 : 6 resonance, as six islands
surrounding the 1 : 1 (four of which are flattened). At high values of momentum,
the dynamics are again regular, and resemble more the constant energy surfaces of
the undriven system for large momenta. These invariant KAM surfaces bound the

energy of the chaotic trajectories.

2.2 Classical Simulation and Energy Absorption

A poor man’s quantum simulation may be carried out by iterating a “cloud” of
trajectories, arising from a distribution of initial conditions in phase space. Whereas
a quantum state carries phase information, a cloud of classical trajectories is a
probability distribution and does not take into account phase cancellation. That is,
a coarse-grained probability distribution would simply add magnitudes (number of
trajectories per sector), though we know that the true quantum prescription is to
add the complex amplitudes associated with given trajectories and then take the
modulus.

To demonstrate the character of the stochastic dynamics of trajectories in the

low-momentum chaotic region, we chose one hundred arbitrary initial conditions
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Figure 2.1: Poincaré section for the system described by the Hamiltonian (2.2) with

A = 0.05. Trajectories are sampled at 7 =a4 7.
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at low momentum and iterated them through the Poincaré map. By recording
the ensemble energy (E) = 13, p? after each Poincaré iterate, we computed the
statistics maz({F)) and ave({E)) over ten thousand cycles of drive. Only the kinetic
energy needs to be calculated, since our Poincaré section samples the motion at
T =ax T, when the potential energy is exactly zero in the well. Since the motion
within a chaotic region is ergodic, such a long time average is a valid representation

of the dynamics of an ensemble.

The result of such calculations, as the unitless driving amplitude ) is varied,
is shown in figure 2.2. The solid curve is the maximum ensemble energy, and the
dotted curve is the mean ensemble energy. The dashed smooth horizontal curves are
the tops of the 1:1, 2:1, and 3:1 resonances, denoted on the right. The vertical lines
mark the value of A where the indicated even resonances become unstable. If one
assumes a fixed physical drive amplitude, the effects of varying the drive frequency
can easily be obtained from a transformation of figure 2.2, using the scaling in
equations 2.1.

The most notable features of such a simulation are the plateaus in the maxi-
mum ensemble energy. They correspond to the tops of particular resonances, where
KAM surfaces block transport to the next resonance, and higher momenta. As A
is increased, the size of each resonance increases (as v/}, see Chirikov [15]). Even-
tually they grow to such an extent that the KAM surfaces between resonances are
destroyed, and transport is allowed to the next resonance island. Thus we see sharp
increases in energy from one plateau to the next.

The Chirikov criterion exploits what we just explained to predict the destruction
of KAM surfaces [15]). The criterion uses first order perturbation theory to calculate

the positions and half-widths of each resonance. Because of the symmetric nature
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Figure 2.2: Classical energy absorption over many drive cycles as a function of the

unitless driving parameter A.

of the well, only the odd resonances are predicted to first order. In fact, the even
resonances exist, but are in general much smaller than the odd ones. The criterion
simply states that the KAM surfaces will be destroyed between two resonances
when the sum of half-widths of the resonances exceeds the distance between them.
Without performing the calculation, (see [15, 33]), the positions and half-widths in

phase space of the odd resonances (to first order) are:

2 4/
Pn = Er_’ Apﬂ = F—, n= 1,3,5,“. (2.4)

This gives an overlap criterion between the n*? and the (n + 2)™ resonances:

. . 1
(Apn + APﬂ+2) 2 (p" - Pn+2); implying A2 4(n + 1)2 .

This result would imply an overlap between the 1 : 1 and 3 : 1 resonances at
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A = 1/16. It is an overestimate, as is common when one uses this criterion, however

the predictions are much better for higher-ordered resonances.

A better analytic method for predicting the destruction of KAM surfaces be-
tween resonances is a method introduced by Greene [23, 32]. He noted, through
numerical study, that KAM destruction seemed to correspond to a nearby chain of
n : m resonance islands making the transition from being stable to being unstable.
Moreover, he was able to prove this to be true for a simple map called the standard
map where stability criteria could be found for arbitrarily high-order resonance is-
land chains. Using a renormalization scheme, he pinpointed the parameter value
where all resonances would go unstable in a particular region, and thus when all

KAM surfaces in that region would disappear.

We have naively used this criterion to analyze the driven square well. By only
looking at the stability of the main even-ordered n : 1 resonances, one can approxi-
mate the value when the KAM surfaces will disappear between the odd resonances.
This is confirmed by plotting the values where the even resonances turn unstable,
and comparing them with the jumps in energy due to KAM line destruction. As
seen in figure 2.2, this works for most resonances (again, the worst case being the
destruction of KAM surfaces between the 3:1 and 1:1). Of course, the destruction
of the lowest lying KAM surfaces is impossible to see because of the width of the

initial cloud of states, coarse statistics, and numerical noise.

Greene’s method is in principle exact, however one must determine the stability
of all n : m resonances in order to determine the exact value of some parameter at
which the last KAM surface is truly destroyed. Renormalization calculations which
yield very accurate predictions of KAM surface destruction were done by Lin and

Reichl [30].
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2.3 n:1 Resonances and Their Stabilities

We now calculate the phase-space locations and stability of all n : 1 resonances
in the driven square well, which were used in predicting the absorption plateaus
and transitions in the classical simulation of section 2.2. In principle, this can be
accomplished using the Poincaré map, P. However, since an n : 1 resonant trajectory
is a fixed point of the map P", analysis of such a resonance can become unwieldy
for any value of n greater than one or two.

Instead, we use a slightly different map to achieve this goal. This new map,
which we will call M, is obtained by time-evolving the particle with equation (2.3),
but only up to the time when it bounces off of a particular wall, which we choose to
be the left wall at ¢ = —1. Therefore, the iteration scheme goes just as before, only
we sample the dynamics at a wall collision. Thus, M : (7042, 2) — ('rI’n odz2x’ '),
whereas P : (g,p) — (¢',p’). This has the advantage that all » : 1 resonances show
up as fixed points of M. On a resonant trajectory, the particle simply gets wiggled
n times during its flight from wall to wall, and in fact has the same magnitude of
velocity when it bounces off either wall. It is this observation about the particle’s
trajectory that allows us to explicitly calculate these resonances.

Taking the 7-derivative of equation (2.3) gives:
?(7) = Acos(T) — cos(70)] + Po. (2.5)

We seek a condition where the electron leaves the left wall at time 75, and arrives
at the right wall at time Tp = nx + 79, with p(Tr) = po. From equation (2.5), this

requires:

™

o=T17"=+1r.

The two cases (corresponding to either sign of 7*) will be treated separately, as
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both correspond to fixed points of M. Using equation (2.3), setting g(7r) = 1 and

go = —1, and solving for pp, we find our resonant momenta?:

e 2 A((-1)"-1)
= nr .

Po=7p

Reversing the momentum at 7 = 7g, it is clear from equation (2.5) that at time
71 = 2n7 + 7*, the momentum has returned to its original value: p(71) = p(7g) =
p*. Also, from equation (2.3), the electron has returned to the left wall. Thus
M (t%,p*) = (7°,p°). At this time, the system has undergone n cycles of drive,
8o we have found an » : 1 resonant trajectory.

Now that we have found the locations of these fixed points of M, the next step is
to determine their stabilities. For this we must linearize M about the fixed points,

and use standard linear stability analysis. Linearizing M about (7*,p*),

T* T—1T
M(r,p)= + M + -
o p—p
where
8
ry
an 8
5 Om (roipo)=(*p*)

is the Jacobian of M evaluated at (7*,p*). The stability of the fixed point at (0, 0)
of M is identical with that of the fixed point (7*,p*) of M.

The elements of M can be obtained from equations (2.3) and (2.5), by first

INotice that for odd n these momenta differ from the perturbative calculation used in the
Chirikov criterion (Eq. 2.4) only by a factor proportional to A. These exact momenta, plus the
perturbatively calculated half-widths, give us the estimate for the tops of the resonances seen in

figure 2.2. The even resonances are small, so their half-widths are taken to be zero.
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setting g(7r) = 1 and g(71) = go = —1 to obtain the four equations:

1 = Msin(vr) - sin(7o)] + [po — A cos(ro)}(7r — 7o) — 1

PR = —(A[cos(7r) — cos(7o)] + po)
(2.6)

-1 = Afsin(n) - sin(7gr)] + [pr — A cos(TR)](T1 — TR) + 1
p1 = —(Acos(ry) — cos(7r)] + pr).

(From now on we define pg = p(7r) and py = p(71).) These equations correspond
to motion from the left wall to the right wall, reversing momentum (thus the overall
minus signs in the momentum equations), and returning to the left wall, where the
momentum is once again reversed, so that the process is ready for re-iteration.

Taking the derivatives of all four equations (2.6) with respect to 7o and pg, one
obtains eight equations which not only contain the elements of M, but also the
four partial derivatives of 7p and pp with respect to 79 and pp. Substituting in
the resonant values for 79, Tg, 71, and po(= pr = p1), the eight equations can be
inverted to find an explicit form for M.

Linear stability theory gives a simple condition for fixed-point stability when the
map is two-dimensional, and area-preserving. This is the case here, since det(M) =
1, which can be readily checked. In this case, the fixed point (0,0) is stable if and
only if |TrM| < 2.

For even n,

TrM = 2 - Alnfird,
for both 7* = :i:%‘lr. Thus the even resonances are stable if and only if

2
[Al < L (2.7)
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For odd =,
aAn?r?  Alpipd
TM=2- |\ 3T "D
= —%‘n‘, the signs in the denominator are plus signs, and TrM > 2 for any

positive A. Thus half of the odd resonances are always unstable. If 7* = +1r,
the signs in the denominator are minus, and some algebra reveals that these odd

resonances are stable if and only if
(2.8)

Thus we have determined the (7,p) locations and stabilities of all of the n : 1
resonant trajectories of M. These trajectories show up as n*h order fixed points of
the Poincaré map P, with identical stability criteria. To find the (g, p) intersections
of these trajectories given by P, one needs only to evaluate equations (2.3) and (2.5)
at each cycle of drive.

This ends our classical exploration of driven systems. This chapter was meant
to give the reader a feel for the phase space structure of a driven, confined system.
As we will see in the next chapter, many of the classical phase space features will
persist into the quantum regime. In addition, the system’s nonintegrability will give
rise to a surprising new feature, which is purely a quantum-mechanical in nature.

Let us now proceed to quantize the driven square well.
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